The Enzyme Database

Your query returned 1 entry.    printer_iconPrintable version

EC 1.1.1.37     
Accepted name: malate dehydrogenase
Reaction: (S)-malate + NAD+ = oxaloacetate + NADH + H+
For diagram of the citric-acid cycle, click here and for diagram of the glyoxylate cycle, click here
Other name(s): malic dehydrogenase; L-malate dehydrogenase; NAD-L-malate dehydrogenase; malic acid dehydrogenase; NAD-dependent malic dehydrogenase; NAD-malate dehydrogenase; NAD-malic dehydrogenase; malate (NAD) dehydrogenase; NAD-dependent malate dehydrogenase; NAD-specific malate dehydrogenase; NAD-linked malate dehydrogenase; MDH (ambiguous); L-malate-NAD+ oxidoreductase
Systematic name: (S)-malate:NAD+ oxidoreductase
Comments: There are several forms of malate dehydrogenases that differ by their use of substrate and cofactors. This NAD+-dependent enzyme forms oxaloacetate and unlike EC 1.1.1.38, malate dehydrogenase (oxaloacetate-decarboxylating), is unable to convert it to pyruvate. Also oxidizes some other 2-hydroxydicarboxylic acids. cf. EC 1.1.1.82, malate dehydrogenase (NADP+); EC 1.1.1.299, malate dehydrogenase [NAD(P)+]; and EC 1.1.5.4, malate dehydrogenase (quinone).
Links to other databases: BRENDA, EXPASY, GTD, KEGG, MetaCyc, PDB, CAS registry number: 9001-64-3
References:
1.  Banaszak, L.J. and Bradshaw, R.A. Malate dehydrogenase. In: Boyer, P.D. (Ed.), The Enzymes, 3rd edn, vol. 11, Academic Press, New York, 1975, pp. 369–396.
2.  Guha, A., Englard, S. and Listowsky, I. Beef heart malic dehydrogenases. VII. Reactivity of sulfhydryl groups and conformation of the supernatant enzyme. J. Biol. Chem. 243 (1968) 609–615. [PMID: 5637713]
3.  McReynolds, M.S. and Kitto, G.B. Purification and properties of Drosophila malate dehydrogenases. Biochim. Biophys. Acta 198 (1970) 165–175. [DOI] [PMID: 4313528]
4.  Wolfe, R.G. and Nielands, J.B. Some molecular and kinetic properties of heart malic dehydrogenase. J. Biol. Chem. 221 (1956) 61–69. [PMID: 13345798]
[EC 1.1.1.37 created 1961]
 
 


Data © 2001–2024 IUBMB
Web site © 2005–2024 Andrew McDonald