The Enzyme Database

Displaying entries 1-50 of 87.

<< Previous | Next >>    printer_iconPrintable version



EC 7.1.1.1     
Accepted name: proton-translocating NAD(P)+ transhydrogenase
Reaction: NADPH + NAD+ + H+[side 1] = NADP+ + NADH + H+[side 2]
Other name(s): pntA (gene name); pntB (gene name); NNT (gene name)
Systematic name: NADPH:NAD+ oxidoreductase (H+-transporting)
Comments: The enzyme is a membrane bound proton-translocating pyridine nucleotide transhydrogenase that couples the reversible reduction of NADP by NADH to an inward proton translocation across the membrane. In the bacterium Escherichia coli the enzyme provides a major source of cytosolic NADPH. Detoxification of reactive oxygen species in mitochondria by glutathione peroxidases depends on NADPH produced by this enzyme.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Clarke, D.M. and Bragg, P.D. Cloning and expression of the transhydrogenase gene of Escherichia coli. J. Bacteriol. 162 (1985) 367–373. [PMID: 3884596]
2.  Clarke, D.M. and Bragg, P.D. Purification and properties of reconstitutively active nicotinamide nucleotide transhydrogenase of Escherichia coli. Eur. J. Biochem. 149 (1985) 517–523. [DOI] [PMID: 3891338]
3.  Glavas, N.A., Hou, C. and Bragg, P.D. Involvement of histidine-91 of the β subunit in proton translocation by the pyridine nucleotide transhydrogenase of Escherichia coli. Biochemistry 34 (1995) 7694–7702. [PMID: 7779816]
4.  Sauer, U., Canonaco, F., Heri, S., Perrenoud, A. and Fischer, E. The soluble and membrane-bound transhydrogenases UdhA and PntAB have divergent functions in NADPH metabolism of Escherichia coli. J. Biol. Chem. 279 (2004) 6613–6619. [DOI] [PMID: 14660605]
5.  Bizouarn, T., Fjellstrom, O., Meuller, J., Axelsson, M., Bergkvist, A., Johansson, C., Goran Karlsson, B. and Rydstrom, J. Proton translocating nicotinamide nucleotide transhydrogenase from E. coli. Mechanism of action deduced from its structural and catalytic properties. Biochim. Biophys. Acta 1457 (2000) 211–228. [DOI] [PMID: 10773166]
6.  White, S.A., Peake, S.J., McSweeney, S., Leonard, G., Cotton, N.P. and Jackson, J.B. The high-resolution structure of the NADP(H)-binding component (dIII) of proton-translocating transhydrogenase from human heart mitochondria. Structure 8 (2000) 1–12. [PMID: 10673423]
7.  Johansson, T., Oswald, C., Pedersen, A., Tornroth, S., Okvist, M., Karlsson, B.G., Rydstrom, J. and Krengel, U. X-ray structure of domain I of the proton-pumping membrane protein transhydrogenase from Escherichia coli. J. Mol. Biol. 352 (2005) 299–312. [DOI] [PMID: 16083909]
8.  Meimaridou, E., Kowalczyk, J., Guasti, L., Hughes, C.R., Wagner, F., Frommolt, P., Nurnberg, P., Mann, N.P., Banerjee, R., Saka, H.N., Chapple, J.P., King, P.J., Clark, A.J. and Metherell, L.A. Mutations in NNT encoding nicotinamide nucleotide transhydrogenase cause familial glucocorticoid deficiency. Nat. Genet. 44 (2012) 740–742. [DOI] [PMID: 22634753]
[EC 7.1.1.1 created 2015 as EC 1.6.1.5, transferred 2018 to EC 7.1.1.1]
 
 
EC 7.1.1.2     
Accepted name: NADH:ubiquinone reductase (H+-translocating)
Reaction: NADH + ubiquinone + 6 H+[side 1] = NAD+ + ubiquinol + 7 H+[side 2]
Other name(s): ubiquinone reductase (ambiguous); type 1 dehydrogenase; complex 1 dehydrogenase; coenzyme Q reductase (ambiguous); complex I (electron transport chain); complex I (mitochondrial electron transport); complex I (NADH:Q1 oxidoreductase); dihydronicotinamide adenine dinucleotide-coenzyme Q reductase (ambiguous); DPNH-coenzyme Q reductase (ambiguous); DPNH-ubiquinone reductase (ambiguous); mitochondrial electron transport complex 1; mitochondrial electron transport complex I; NADH coenzyme Q1 reductase; NADH-coenzyme Q oxidoreductase (ambiguous); NADH-coenzyme Q reductase (ambiguous); NADH-CoQ oxidoreductase (ambiguous); NADH-CoQ reductase (ambiguous); NADH-ubiquinone reductase (ambiguous); NADH-ubiquinone oxidoreductase (ambiguous); NADH-ubiquinone-1 reductase; reduced nicotinamide adenine dinucleotide-coenzyme Q reductase (ambiguous); NADH:ubiquinone oxidoreductase complex; NADH-Q6 oxidoreductase (ambiguous); electron transfer complex I; NADH2 dehydrogenase (ubiquinone)
Systematic name: NADH:ubiquinone oxidoreductase
Comments: A flavoprotein (FMN) containing iron-sulfur clusters. The complex is present in mitochondria and aerobic bacteria. Breakdown of the complex can release EC 1.6.99.3, NADH dehydrogenase. In photosynthetic bacteria, reversed electron transport through this enzyme can reduce NAD+ to NADH.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 9028-04-0
References:
1.  Hatefi, Y., Ragan, C.I. and Galante, Y.M. The enzymes and the enzyme complexes of the mitochondrial oxidative phosphorylation system. In: Martonosi, A. (Ed.), The Enzymes of Biological Membranes, 2nd edn, vol. 4, Plenum Press, New York, 1985, pp. 1–70.
2.  Herter, S.M., Kortluke, C.M. and Drews, G. Complex I of Rhodobacter capsulatus and its role in reverted electron transport. Arch. Microbiol. 169 (1998) 98–105. [PMID: 9446680]
3.  Hunte, C., Zickermann, V. and Brandt, U. Functional modules and structural basis of conformational coupling in mitochondrial complex I. Science 329 (2010) 448–451. [DOI] [PMID: 20595580]
4.  Efremov, R.G., Baradaran, R. and Sazanov, L.A. The architecture of respiratory complex I. Nature 465 (2010) 441–445. [DOI] [PMID: 20505720]
5.  Wikstrom, M. and Hummer, G. Stoichiometry of proton translocation by respiratory complex I and its mechanistic implications. Proc. Natl. Acad. Sci. USA 109 (2012) 4431–4436. [DOI] [PMID: 22392981]
[EC 7.1.1.2 created 1961 as EC 1.6.5.3, deleted 1965, reinstated 1983, modified 2011, modified 2013, transferred 2018 to EC 7.1.1.2]
 
 
EC 7.1.1.3     
Accepted name: ubiquinol oxidase (H+-transporting)
Reaction: 2 ubiquinol + O2 + n H+[side 1] = 2 ubiquinone + 2 H2O + n H+[side 2]
Other name(s): cytochrome bb3 oxidase; cytochrome bo oxidase; cytochrome bd-II oxidase; ubiquinol:O2 oxidoreductase (H+-transporting)
Systematic name: ubiquinol:oxygen oxidoreductase (H+-transporting)
Comments: Contains a dinuclear centre comprising two hemes, or heme and copper. This terminal oxidase enzyme generates proton motive force by two mechanisms: (1) transmembrane charge separation resulting from utilizing protons and electrons originating from opposite sides of the membrane to generate water, and (2) active pumping of protons across the membrane. The bioenergetic efficiency (the number of charges driven across the membrane per electron used to reduce oxygen to water) depends on the enzyme; for example, for the bo3 oxidase it is 2, while for the bd-II oxidase it is 1. cf. EC 7.1.1.7, ubiquinol oxidase ubiquinol oxidase (electrogenic, proton-motive force generating).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Abramson, J., Riistama, S., Larsson, G., Jasaitis, A., Svensson-Ek, M., Laakkonen, L., Puustinen, A., Iwata, S. and Wikstrom, M. The structure of the ubiquinol oxidase from Escherichia coli and its ubiquinone binding site. Nat. Struct. Biol. 7 (2000) 910–917. [DOI] [PMID: 11017202]
2.  Yap, L.L., Lin, M.T., Ouyang, H., Samoilova, R.I., Dikanov, S.A. and Gennis, R.B. The quinone-binding sites of the cytochrome bo3 ubiquinol oxidase from Escherichia coli. Biochim. Biophys. Acta 1797 (2010) 1924–1932. [DOI] [PMID: 20416270]
3.  Shepherd, M., Sanguinetti, G., Cook, G.M. and Poole, R.K. Compensations for diminished terminal oxidase activity in Escherichia coli: cytochrome bd-II-mediated respiration and glutamate metabolism. J. Biol. Chem. 285 (2010) 18464–18472. [DOI] [PMID: 20392690]
4.  Borisov, V.B., Murali, R., Verkhovskaya, M.L., Bloch, D.A., Han, H., Gennis, R.B. and Verkhovsky, M.I. Aerobic respiratory chain of Escherichia coli is not allowed to work in fully uncoupled mode. Proc. Natl. Acad. Sci. USA 108 (2011) 17320–17324. [DOI] [PMID: 21987791]
[EC 7.1.1.3 created 2011 as EC 1.10.3.10, modified 2014, transferred 2018 to EC 7.1.1.3]
 
 
EC 7.1.1.4     
Accepted name: caldariellaquinol oxidase (H+-transporting)
Reaction: 2 caldariellaquinol + O2 + n H+[side 1] = 2 caldariellaquinone + 2 H2O + n H+[side 2]
Glossary: caldariellaquinol = 6-(3,7,11,15,19,23-hexamethyltetracosyl)-5-(methylsulfanyl)-1-benzothiophene-4,7-diol
Other name(s): SoxABCD quinol oxidase; SoxABCD complex; quinol oxidase SoxABCD; SoxM supercomplex; aa3-type quinol oxidase; aa3 quinol oxidase; cytochrome aa3; terminal quinol oxidase; terminal quinol:oxygen oxidoreductase; caldariella quinol:dioxygen oxidoreductase; cytochrome aa3-type oxidase; caldariellaquinol:O2 oxidoreductase (H+-transporting)
Systematic name: caldariellaquinol:oxygen oxidoreductase (H+-transporting)
Comments: A copper-containing cytochrome. The enzyme from thermophilic archaea is part of the terminal oxidase and catalyses the reduction of O2 to water, accompanied by the extrusion of protons across the cytoplasmic membrane.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Gleissner, M., Kaiser, U., Antonopoulos, E. and Schafer, G. The archaeal SoxABCD complex is a proton pump in Sulfolobus acidocaldarius. J. Biol. Chem. 272 (1997) 8417–8426. [DOI] [PMID: 9079667]
2.  Purschke, W.G., Schmidt, C.L., Petersen, A. and Schafer, G. The terminal quinol oxidase of the hyperthermophilic archaeon Acidianus ambivalens exhibits a novel subunit structure and gene organization. J. Bacteriol. 179 (1997) 1344–1353. [DOI] [PMID: 9023221]
3.  Gilderson, G., Aagaard, A., Gomes, C.M., Adelroth, P., Teixeira, M. and Brzezinski, P. Kinetics of electron and proton transfer during O2 reduction in cytochrome aa3 from A. ambivalens: an enzyme lacking Glu(I-286). Biochim. Biophys. Acta 1503 (2001) 261–270. [DOI] [PMID: 11115638]
4.  Komorowski, L., Verheyen, W. and Schafer, G. The archaeal respiratory supercomplex SoxM from S. acidocaldarius combines features of quinole and cytochrome c oxidases. Biol. Chem. 383 (2002) 1791–1799. [DOI] [PMID: 12530544]
5.  Muller, F.H., Bandeiras, T.M., Urich, T., Teixeira, M., Gomes, C.M. and Kletzin, A. Coupling of the pathway of sulphur oxidation to dioxygen reduction: characterization of a novel membrane-bound thiosulphate:quinone oxidoreductase. Mol. Microbiol. 53 (2004) 1147–1160. [DOI] [PMID: 15306018]
6.  Bandeiras, T.M., Pereira, M.M., Teixeira, M., Moenne-Loccoz, P. and Blackburn, N.J. Structure and coordination of CuB in the Acidianus ambivalens aa3 quinol oxidase heme-copper center. J. Biol. Inorg. Chem. 10 (2005) 625–635. [DOI] [PMID: 16163550]
[EC 7.1.1.4 created 2013 as EC 1.10.3.13, transferred 2018 to EC 7.1.1.4]
 
 
EC 7.1.1.5     
Accepted name: menaquinol oxidase (H+-transporting)
Reaction: 2 menaquinol + O2 + n H+[side 1] = 2 menaquinone + 2 H2O + n H+[side 2]
Other name(s): cytochrome aa3-600 oxidase; cytochrome bd oxidase; menaquinol:O2 oxidoreductase (H+-transporting)
Systematic name: menaquinol:oxygen oxidoreductase (H+-transporting)
Comments: Cytochrome aa3-600, one of the principal respiratory oxidases from Bacillus subtilis, is a member of the heme-copper superfamily of oxygen reductases, and is a close homologue of the cytochrome bo3 ubiquinol oxidase from Escherichia coli, but uses menaquinol instead of ubiquinol as a substrate.The enzyme also pumps protons across the membrane bilayer, generating a proton motive force.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Lauraeus, M. and Wikstrom, M. The terminal quinol oxidases of Bacillus subtilis have different energy conservation properties. J. Biol. Chem. 268 (1993) 11470–11473. [PMID: 8388393]
2.  Lemma, E., Simon, J., Schagger, H. and Kroger, A. Properties of the menaquinol oxidase (Qox) and of qox deletion mutants of Bacillus subtilis. Arch. Microbiol. 163 (1995) 432–438. [PMID: 7575098]
3.  Yi, S.M., Narasimhulu, K.V., Samoilova, R.I., Gennis, R.B. and Dikanov, S.A. Characterization of the semiquinone radical stabilized by the cytochrome aa3-600 menaquinol oxidase of Bacillus subtilis. J. Biol. Chem. 285 (2010) 18241–18251. [DOI] [PMID: 20351111]
[EC 7.1.1.5 created 2011 as EC 1.10.3.12, transferred 2018 to EC 7.1.1.5]
 
 
EC 7.1.1.6     
Accepted name: plastoquinol—plastocyanin reductase
Reaction: plastoquinol + 2 oxidized plastocyanin + 2 H+[side 1] = plastoquinone + 2 reduced plastocyanin + 4 H+[side 2]
Other name(s): plastoquinol/plastocyanin oxidoreductase; cytochrome f/b6 complex; cytochrome b6f complex
Systematic name: plastoquinol:oxidized-plastocyanin oxidoreductase
Comments: Contains two b-type cytochromes, two c-type cytochromes (cn and f), and a [2Fe-2S] Rieske cluster. The enzyme plays a key role in photosynthesis, transferring electrons from photosystem II (EC 1.10.3.9) to photosystem I (EC 1.97.1.12). Cytochrome c-552 can act as acceptor instead of plastocyanin, but more slowly. In chloroplasts, protons are translocated through the thylakoid membrane from the stroma to the lumen. The mechanism occurs through the Q cycle as in EC 7.1.1.8, quinol—cytochrome-c reductase (complex III) and involves electron bifurcation.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 79079-13-3
References:
1.  Hurt, E. and Hauska, G. A cytochrome f/b6 complex of five polypeptides with plastoquinol-plastocyanin-oxidoreductase activity from spinach chloroplasts. Eur. J. Biochem. 117 (1981) 591–595. [DOI] [PMID: 6269845]
2.  Cramer, W.A. and Zhang, H. Consequences of the structure of the cytochrome b6f complex for its charge transfer pathways. Biochim. Biophys. Acta 1757 (2006) 339–345. [DOI] [PMID: 16787635]
[EC 7.1.1.6 created 1984 as EC 1.10.99.1, transferred 2011 to EC 1.10.9.1, transferred 2018 to EC 7.1.1.6]
 
 
EC 7.1.1.7     
Accepted name: ubiquinol oxidase (electrogenic, proton-motive force generating)
Reaction: 2 ubiquinol + O2[side 2] + 4 H+[side 2] = 2 ubiquinone + 2 H2O[side 2] + 4 H+[side 1] (overall reaction)
(1a) 2 ubiquinol = 2 ubiquinone + 4 H+[side 1] + 4 e-
(1b) O2[side 2] + 4 H+[side 2] + 4 e- = 2 H2O[side 2]
Other name(s): ubiquinol oxidase (electrogenic, non H+-transporting); cytochrome bd-I oxidase; cydA (gene name); cydB (gene name); ubiquinol:O2 oxidoreductase (electrogenic, non H+-transporting)
Systematic name: ubiquinol:oxygen oxidoreductase (electrogenic, non H+-transporting)
Comments: This terminal oxidase enzyme is unable to pump protons but generates a proton motive force by transmembrane charge separation resulting from utilizing protons and electrons originating from opposite sides of the membrane to generate water. The bioenergetic efficiency (the number of charges driven across the membrane per electron used to reduce oxygen to water) is 1. The bd-I oxidase from the bacterium Escherichia coli is the predominant respiratory oxygen reductase that functions under microaerophilic conditions in that organism. cf. EC 7.1.1.3, ubiquinol oxidase (H+-transporting).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Miller, M.J., Hermodson, M. and Gennis, R.B. The active form of the cytochrome d terminal oxidase complex of Escherichia coli is a heterodimer containing one copy of each of the two subunits. J. Biol. Chem. 263 (1988) 5235–5240. [PMID: 3281937]
2.  Puustinen, A., Finel, M., Haltia, T., Gennis, R.B. and Wikstrom, M. Properties of the two terminal oxidases of Escherichia coli. Biochemistry 30 (1991) 3936–3942. [PMID: 1850294]
3.  Belevich, I., Borisov, V.B., Zhang, J., Yang, K., Konstantinov, A.A., Gennis, R.B. and Verkhovsky, M.I. Time-resolved electrometric and optical studies on cytochrome bd suggest a mechanism of electron-proton coupling in the di-heme active site. Proc. Natl. Acad. Sci. USA 102 (2005) 3657–3662. [DOI] [PMID: 15728392]
4.  Lenn, T., Leake, M.C. and Mullineaux, C.W. Clustering and dynamics of cytochrome bd-I complexes in the Escherichia coli plasma membrane in vivo. Mol. Microbiol. 70 (2008) 1397–1407. [DOI] [PMID: 19019148]
[EC 7.1.1.7 created 2014 as EC 1.10.3.14, modified 2017, transferred 2018 to EC 7.1.1.7]
 
 
EC 7.1.1.8     
Accepted name: quinol—cytochrome-c reductase
Reaction: quinol + 2 ferricytochrome c = quinone + 2 ferrocytochrome c + 2 H+[side 2]
Other name(s): ubiquinol—cytochrome-c reductase; coenzyme Q-cytochrome c reductase; dihydrocoenzyme Q-cytochrome c reductase; reduced ubiquinone-cytochrome c reductase; complex III (mitochondrial electron transport); ubiquinone-cytochrome c reductase; ubiquinol-cytochrome c oxidoreductase; reduced coenzyme Q-cytochrome c reductase; ubiquinone-cytochrome c oxidoreductase; reduced ubiquinone-cytochrome c oxidoreductase; mitochondrial electron transport complex III; ubiquinol-cytochrome c-2 oxidoreductase; ubiquinone-cytochrome b-c1 oxidoreductase; ubiquinol-cytochrome c2 reductase; ubiquinol-cytochrome c1 oxidoreductase; CoQH2-cytochrome c oxidoreductase; ubihydroquinol:cytochrome c oxidoreductase; coenzyme QH2-cytochrome c reductase; QH2:cytochrome c oxidoreductase; ubiquinol:ferricytochrome-c oxidoreductase
Systematic name: quinol:ferricytochrome-c oxidoreductase
Comments: The enzyme, often referred to as the cytochrome bc1 complex or complex III, is the third complex in the electron transport chain. It is present in the mitochondria of all aerobic eukaryotes and in the inner membranes of most bacteria. The mammalian enzyme contains cytochromes b-562, b-566 and c1, and a 2-iron ferredoxin. Depending on the organism and physiological conditions, the enzyme extrudes either two or four protons from the cytoplasmic to the non-cytoplasmic compartment (cf. EC 1.6.99.3, NADH dehydrogenase).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9027-03-6
References:
1.  Marres, C.A.M. and Slater, E.C. Polypeptide composition of purified QH2:cytochrome c oxidoreductase from beef-heart mitochondria. Biochim. Biophys. Acta 462 (1977) 531–548. [DOI] [PMID: 597492]
2.  Rieske, J.S. Composition, structure, and function of complex III of the respiratory chain. Biochim. Biophys. Acta 456 (1976) 195–247. [PMID: 788795]
3.  Wikström, M., Krab, K. and Saraste, M. Proton-translocating cytochrome complexes. Annu. Rev. Biochem. 50 (1981) 623–655. [DOI] [PMID: 6267990]
4.  Sone, N., Tsuchiya, N., Inoue, M. and Noguchi, S. Bacillus stearothermophilus qcr operon encoding rieske FeS protein, cytochrome b6, and a novel-type cytochrome c1 of quinol-cytochrome c reductase. J. Biol. Chem. 271 (1996) 12457–12462. [DOI] [PMID: 8647852]
5.  Yu, J. and Le Brun, N.E. Studies of the cytochrome subunits of menaquinone:cytochrome c reductase (bc complex) of Bacillus subtilis. Evidence for the covalent attachment of heme to the cytochrome b subunit. J. Biol. Chem. 273 (1998) 8860–8866. [DOI] [PMID: 9535866]
6.  Elbehti, A., Nitschke, W., Tron, P., Michel, C. and Lemesle-Meunier, D. Redox components of cytochrome bc-type enzymes in acidophilic prokaryotes. I. Characterization of the cytochrome bc1-type complex of the acidophilic ferrous ion-oxidizing bacterium Thiobacillus ferrooxidans. J. Biol. Chem. 274 (1999) 16760–16765. [DOI] [PMID: 10358017]
[EC 7.1.1.8 created 1978 as EC 1.10.2.2, modified 2013, transferred 2018 to EC 7.1.1.8]
 
 
EC 7.1.2.1     
Accepted name: P-type H+-exporting transporter
Reaction: ATP + H2O + H+[side 1] = ADP + phosphate + H+[side 2]
Other name(s): proton-translocating ATPase; yeast plasma membrane H+-ATPase; yeast plasma membrane ATPase; ATP phosphohydrolase (ambiguous); proton-exporting ATPase; proton transport ATPase; proton-translocating P-type ATPase; H+-transporting ATPase
Systematic name: ATP phosphohydrolase (P-type, H+-exporting)
Comments: A P-type ATPase that undergoes covalent phosphorylation during the transport cycle. This enzyme occurs in protozoa, fungi and plants, and generates an electrochemical potential gradient of protons across the plasma membrane.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Goffeau, A. and Slayman, C. The proton-translocating ATPase of the fungal plasma membrane. Biochim. Biophys. Acta 639 (1981) 197–223. [PMID: 6461354]
2.  Serrano, R., Kielland-Brandt, M.C. and Fink, G.R. Yeast plasma membrane ATPase is essential for growth and has homology with (Na++K+)-, K+-and Ca2+-ATPases. Nature 319 (1986) 689–693. [DOI] [PMID: 3005867]
3.  Serrano, R. and Portillo, F. Catalytic and regulatory sites of yeast plasma membrane H+-ATPase studied by directed mutagenesis. Biochim. Biophys. Acta 1018 (1990) 195–199. [DOI] [PMID: 2144186]
4.  Perlin, D.S., San Francisco, M.J., Slayman, C.W. and Rosen, B.P. H+/ATP stoichiometry of proton pumps from Neurospora crassa and Escherichia coli. Arch. Biochem. Biophys. 248 (1986) 53–61. [PMID: 2425739]
[EC 7.1.2.1 created 1984 as EC 3.6.1.35, transferred 2000 to EC 3.6.3.6, transferred 2018 to EC 7.1.2.1]
 
 
EC 7.1.2.2     
Accepted name: H+-transporting two-sector ATPase
Reaction: ATP + H2O + 4 H+[side 1] = ADP + phosphate + 4 H+[side 2]
Glossary: In Fo, the "o" refers to oligomycin. F0 is incorrect
Other name(s): ATP synthase; F1-ATPase; FoF1-ATPase; H+-transporting ATPase; mitochondrial ATPase; coupling factors (Fo, F1 and CF1); chloroplast ATPase; bacterial Ca2+/Mg2+ ATPase
Systematic name: ATP phosphohydrolase (two-sector, H+-transporting)
Comments: A multisubunit non-phosphorylated ATPase that is involved in the transport of ions. Large enzymes of mitochondria, chloroplasts and bacteria with a membrane sector (Fo, Vo, Ao) and a cytoplasmic-compartment sector (F1, V1, A1). The F-type enzymes of the inner mitochondrial and thylakoid membranes act as ATP synthases. All of the enzymes included here operate in a rotational mode, where the extramembrane sector (containing 3 α- and 3 β-subunits) is connected via the δ-subunit to the membrane sector by several smaller subunits. Within this complex, the γ- and ε-subunits, as well as the 9-12 c subunits rotate by consecutive 120° angles and perform parts of ATP synthesis. This movement is driven by the H+ electrochemical potential gradient. The V-type (in vacuoles and clathrin-coated vesicles) and A-type (archaeal) enzymes have a similar structure but, under physiological conditions, they pump H+ rather than synthesize ATP.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Perlin, D.S., San Francisco, M.J., Slayman, C.W. and Rosen, B.P. H+/ATP stoichiometry of proton pumps from Neurospora crassa and Escherichia coli. Arch. Biochem. Biophys. 248 (1986) 53–61. [PMID: 2425739]
2.  Boyer, P.D. The binding change mechanism for ATP synthase - some probabilities and possibilities. Biochim. Biophys. Acta 1140 (1993) 215–250. [DOI] [PMID: 8417777]
3.  Abrahams, J.P., Leslie, A.G.W., Lutter, R. and Walker, J.F. Structure at 2.8 Å resolution of F1-ATPase from bovine heart mitochondria. Nature 375 (1994) 621–628. [DOI] [PMID: 8065448]
4.  Blair, A., Ngo, L., Park, J., Paulsen, I.T. and Saier, M.H., Jr. Phylogenetic analyses of the homologous transmembrane channel-forming proteins of the FoF1-ATPases of bacteria, chloroplasts and mitochondria. Microbiology 142 (1996) 17–32. [DOI] [PMID: 8581162]
5.  Noji, H., Yasuda, R., Yoshida, M. and Kinosita, K., Jr. Direct observation of the rotation of F1-ATPase. Nature 386 (1997) 299–302. [DOI] [PMID: 9069291]
6.  Turina, P., Samoray, D. and Graber, P. H+/ATP ratio of proton transport-coupled ATP synthesis and hydrolysis catalysed by CF0F1-liposomes. EMBO J. 22 (2003) 418–426. [PMID: 12554643]
[EC 7.1.2.2 created 1984 as EC 3.6.1.34, transferred 2000 to EC 3.6.3.14, transferred 2018 to EC 7.1.2.2]
 
 
EC 7.1.3.1     
Accepted name: H+-exporting diphosphatase
Reaction: diphosphate + H2O + H+[side 1] = 2 phosphate + H+[side 2]
Other name(s): H+-PPase; proton-pumping pyrophosphatase; vacuolar H+-pyrophosphatase; hydrogen-translocating pyrophosphatase; proton-pumping dihosphatase
Systematic name: diphosphate phosphohydrolase (H+-transporting)
Comments: This enzyme, found in plants and fungi, couples the energy from diphosphate hydrolysis to active proton translocation across the tonoplast into the vacuole. The enzyme acts cooperatively with cytosolic soluble diphosphatases to regulate the cytosolic diphosphate level.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Rea, P.A. and Poole, R.J. Chromatographic resolution of H+-translocating pyrophosphatase from H+-translocating ATPase of higher plant tonoplast. Plant Physiol. 81 (1986) 126–129. [PMID: 16664761]
2.  Sarafian, V. and Poole, R.J. Purification of an H+-translocating inorganic pyrophosphatase from vacuole membranes of red beet. Plant Physiol. 91 (1989) 34–38. [PMID: 16667022]
3.  Hedrich, R., Kurkdjian, A., Guern, J. and Flugge, U.I. Comparative studies on the electrical properties of the H+ translocating ATPase and pyrophosphatase of the vacuolar-lysosomal compartment. EMBO J. 8 (1989) 2835–2841. [PMID: 2479537]
4.  Segami, S., Tomoyama, T., Sakamoto, S., Gunji, S., Fukuda, M., Kinoshita, S., Mitsuda, N., Ferjani, A. and Maeshima, M. Vacuolar H+-pyrophosphatase and cytosolic soluble pyrophosphatases cooperatively regulate pyrophosphate levels in Arabidopsis thaliana. Plant Cell 30 (2018) 1040–1061. [PMID: 29691313]
[EC 7.1.3.1 created 2018]
 
 
EC 7.2.1.1     
Accepted name: NADH:ubiquinone reductase (Na+-transporting)
Reaction: NADH + H+ + ubiquinone + n Na+[side 1] = NAD+ + ubiquinol + n Na+[side 2]
Other name(s): Na+-translocating NADH-quinone reductase; Na+-NQR
Systematic name: NADH:ubiquinone oxidoreductase (Na+-translocating)
Comments: An iron-sulfur flavoprotein, containing two covalently bound molecules of FMN, one noncovalently bound FAD, one riboflavin, and one [2Fe-2S] cluster.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Beattie, P., Tan, K., Bourne, R.M., Leach, D., Rich, P.R. and Ward, F.B. Cloning and sequencing of four structural genes for the Na+-translocating NADH-ubiquinone oxidoreductase of Vibrio alginolyticus. FEBS Lett. 356 (1994) 333–338. [DOI] [PMID: 7805867]
2.  Nakayama, Y., Hayashi, M. and Unemoto, T. Identification of six subunits constituting Na+-translocating NADH-quinone reductase from the marine Vibrio alginolyticus. FEBS Lett. 422 (1998) 240–242. [DOI] [PMID: 9490015]
3.  Bogachev, A.V., Bertsova, Y.V., Barquera, B. and Verkhovsky, M.I. Sodium-dependent steps in the redox reactions of the Na+-motive NADH:quinone oxidoreductase from Vibrio harveyi. Biochemistry 40 (2001) 7318–7323. [DOI] [PMID: 11401580]
4.  Barquera, B., Hellwig, P., Zhou, W., Morgan, J.E., Hase, C.C., Gosink, K.K., Nilges, M., Bruesehoff, P.J., Roth, A., Lancaster, C.R. and Gennis, R.B. Purification and characterization of the recombinant Na+-translocating NADH:quinone oxidoreductase from Vibrio cholerae. Biochemistry 41 (2002) 3781–3789. [DOI] [PMID: 11888296]
5.  Barquera, B., Nilges, M.J., Morgan, J.E., Ramirez-Silva, L., Zhou, W. and Gennis, R.B. Mutagenesis study of the 2Fe-2S center and the FAD binding site of the Na+-translocating NADH:ubiquinone oxidoreductase from Vibrio cholerae. Biochemistry 43 (2004) 12322–12330. [DOI] [PMID: 15379571]
[EC 7.2.1.1 created 2011 as EC 1.6.5.8, transferred 2018 to EC 7.2.1.1]
 
 
EC 7.2.1.2     
Accepted name: ferredoxin—NAD+ oxidoreductase (Na+-transporting)
Reaction: 2 reduced ferredoxin [iron-sulfur] cluster + NAD+ + H+ + Na+[side 1] = 2 oxidized ferredoxin [iron-sulfur] cluster + NADH + Na+[side 2]
Other name(s): Rnf complex (ambiguous); Na+-translocating ferredoxin:NAD+ oxidoreductase
Systematic name: ferredoxin:NAD+ oxidoreductase (Na+-transporting)
Comments: This iron-sulfur and flavin-containing electron transport complex, isolated from the bacterium Acetobacterium woodii, couples the energy from reduction of NAD+ by ferredoxin to pumping sodium ions out of the cell, generating a gradient across the cytoplasmic membrane.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Biegel, E., Schmidt, S. and Muller, V. Genetic, immunological and biochemical evidence for a Rnf complex in the acetogen Acetobacterium woodii. Environ Microbiol 11 (2009) 1438–1443. [DOI] [PMID: 19222539]
2.  Biegel, E. and Muller, V. Bacterial Na+-translocating ferredoxin:NAD+ oxidoreductase. Proc. Natl. Acad. Sci. USA 107 (2010) 18138–18142. [DOI] [PMID: 20921383]
3.  Hess, V., Schuchmann, K. and Muller, V. The ferredoxin:NAD+ oxidoreductase (Rnf) from the acetogen Acetobacterium woodii requires Na+ and is reversibly coupled to the membrane potential. J. Biol. Chem. 288 (2013) 31496–31502. [DOI] [PMID: 24045950]
[EC 7.2.1.2 created 2015 as EC 1.18.1.8, transferred 2018 to EC 7.2.1.2]
 
 
EC 7.2.1.3     
Accepted name: ascorbate ferrireductase (transmembrane)
Reaction: ascorbate[side 1] + Fe(III)[side 2] = monodehydroascorbate[side 1] + Fe(II)[side 2]
Other name(s): cytochrome b561 (ambiguous)
Systematic name: Fe(III):ascorbate oxidorectuctase (electron-translocating)
Comments: A diheme cytochrome that transfers electrons across a single membrane, such as the outer membrane of the enterocyte, or the tonoplast membrane of the plant cell vacuole. Acts on hexacyanoferrate(III) and other ferric chelates.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Flatmark, T. and Terland, O. Cytochrome b561 of the bovine adrenal chromaffin granules. A high potential b-type cytochrome. Biochim. Biophys. Acta 253 (1971) 487–491. [DOI] [PMID: 4332308]
2.  McKie, A.T., Barrow, D., Latunde-Dada, G.O., Rolfs, A., Sager, G., Mudaly, E., Mudaly, M., Richardson, C., Barlow, D., Bomford, A., Peters, T.J., Raja, K.B., Shirali, S., Hediger, M.A., Farzaneh, F. and Simpson, R.J. An iron-regulated ferric reductase associated with the absorption of dietary iron. Science 291 (2001) 1755–1759. [DOI] [PMID: 11230685]
3.  Su, D. and Asard, H. Three mammalian cytochromes b561 are ascorbate-dependent ferrireductases. FEBS J. 273 (2006) 3722–3734. [DOI] [PMID: 16911521]
4.  Berczi, A., Su, D. and Asard, H. An Arabidopsis cytochrome b561 with trans-membrane ferrireductase capability. FEBS Lett. 581 (2007) 1505–1508. [DOI] [PMID: 17376442]
5.  Wyman, S., Simpson, R.J., McKie, A.T. and Sharp, P.A. Dcytb (Cybrd1) functions as both a ferric and a cupric reductase in vitro. FEBS Lett. 582 (2008) 1901–1906. [DOI] [PMID: 18498772]
6.  Glanfield, A., McManus, D.P., Smyth, D.J., Lovas, E.M., Loukas, A., Gobert, G.N. and Jones, M.K. A cytochrome b561 with ferric reductase activity from the parasitic blood fluke, Schistosoma japonicum. PLoS Negl. Trop. Dis. 4:e884 (2010). [DOI] [PMID: 21103361]
[EC 7.2.1.3 created 2011 as EC 1.16.5.1, transferred 2018 to EC 7.2.1.3]
 
 
EC 7.2.2.1     
Accepted name: Na+-transporting two-sector ATPase
Reaction: ATP + H2O + n Na+[side 1] = ADP + phosphate + n Na+[side 2]
Other name(s): sodium-transporting two-sector ATPase; Na+-translocating ATPase; Na+-translocating FoF1-ATPase; sodium ion specific ATP synthase
Systematic name: ATP phosphohydrolase (two-sector, Na+-transporting)
Comments: A multisubunit ATPase transporter found in some halophilic or alkalophilic bacteria that functions in maintaining sodium homeostasis. The enzyme is similar to EC 7.1.2.2 (H+-transporting two-sector ATPase) but pumps Na+ rather than H+. By analogy to EC 7.1.2.2, it is likely that the enzyme pumps 4 sodium ions for every ATP molecule that is hydrolysed. cf. EC 7.2.2.3, P-type Na+ transporter and EC 7.2.2.4, ABC-type Na+ transporter.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Solioz, M. and Davies, K. Operon of vacuolar-type Na+-ATPase of Enterococcus hirae. J. Biol. Chem. 269 (1994) 9453–9459. [PMID: 8144530]
2.  Takase, K., Kakinuma, S., Yamato, I., Konishi, K., Igarashi, K. and Kanikuma, Y. Sequencing and characterization of the ntp gene cluster for vacuolar-type Na+-translocating ATPase of Enterococcus hirae. J. Biol. Chem. 269 (1994) 11037–11044. [PMID: 8157629]
3.  Rahlfs, S. and Müller, V. Sequence of subunit c of the Na+-translocating F1Fo-ATPase of Acetobacterium woodii: proposal for determinants of Na+ specificity as revealed by sequence comparisons. FEBS Lett. 404 (1997) 269–271. [DOI] [PMID: 9119076]
[EC 7.2.2.1 created 2000 as EC 3.6.3.15, transferred 2018 to EC 7.2.2.1, modified 2018]
 
 
EC 7.2.2.2     
Accepted name: ABC-type Cd2+ transporter
Reaction: ATP + H2O + Cd2+[side 1] = ADP + phosphate + Cd2+[side 2]
Other name(s): cadmium-transporting ATPase (ambiguous); ABC-type cadmium-transporter
Systematic name: ATP phosphohydrolase (ABC-type, heavy-metal-exporting)
Comments: An ATP-binding cassette (ABC) type transporter, characterized by the presence of two similar ATP-binding domains/proteins and two integral membrane domains/proteins. Does not undergo phosphorylation during the transport process. A yeast enzyme that exports some heavy metals, especially Cd2+, from the cytosol into the vacuole.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Li, Z.S., Szczypka, M., Lu, Y.P., Thiele, D.J. and Rea, P.A. The yeast cadmium factor protein (YCF1) is a vacuolar glutathione S-conjugate pump. J. Biol. Chem. 271 (1996) 6509–6517. [DOI] [PMID: 8626454]
2.  Saier, M.H., Jr. Molecular phylogeny as a basis for the classification of transport proteins from bacteria, archaea and eukarya. Adv. Microb. Physiol. 40 (1998) 81–136. [PMID: 9889977]
[EC 7.2.2.2 created 2000 as EC 3.6.3.46, transferred 2018 to EC 7.2.2.2]
 
 
EC 7.2.2.3     
Accepted name: P-type Na+ transporter
Reaction: ATP + H2O + Na+[side 1] = ADP + phosphate + Na+[side 2]
Other name(s): Na+-exporting ATPase (ambiguous); ENA1 (gene name); ENA2 (gene name); ENA5 (gene name); sodium transport ATPase (ambiguous); sodium-translocating P-type ATPase
Systematic name: ATP phosphohydrolase (P-type, Na+-exporting)
Comments: A P-type ATPase that undergoes covalent phosphorylation during the transport cycle. This enzyme from yeast is involved in the efflux of Na+, with one ion being exported per ATP hydrolysed. Some forms can also export Li+ ions. cf. EC 7.2.2.1, Na+-transporting two-sector ATPase and EC 7.2.2.4, ABC-type Na+ transporter.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Wieland, J., Nitsche, A.M., Strayle, J., Steiner, H. and Rudolph, H.K. The PMR2 gene cluster encodes functionally distinct isoforms of a putative Na+ pump in the yeast plasma membrane. EMBO J. 14 (1995) 3870–3882. [PMID: 7664728]
2.  Catty, P., de Kerchove d'Exaerde, A. and Goffeau, A. The complete inventory of the yeast Saccharomyces cerevisiae P-type transport ATPases. FEBS Lett. 409 (1997) 325–332. [DOI] [PMID: 9224683]
3.  Benito, B., Quintero, F.J. and Rodriguez-Navarro, A. Overexpression of the sodium ATPase of Saccharomyces cerevisiae: conditions for phosphorylation from ATP and Pi. Biochim. Biophys. Acta 1328 (1997) 214–226. [PMID: 9315618]
4.  Saier, M.H., Jr. Molecular phylogeny as a basis for the classification of transport proteins from bacteria, archaea and eukarya. Adv. Microb. Physiol. 40 (1998) 81–136. [PMID: 9889977]
[EC 7.2.2.3 created 2000, as EC 3.6.3.7, modified 2001, transferred 20018 to EC 7.2.2.3]
 
 
EC 7.2.2.4     
Accepted name: ABC-type Na+ transporter
Reaction: ATP + H2O + Na+[side 1] = ADP + phosphate + Na+[side 2]
Other name(s): natAB (gene names)
Systematic name: ATP phosphohydrolase (ABC-type, Na+-exporting)
Comments: ABC-type (ATP-binding cassette-type) transporter, characterized by the presence of two similar ATP-binding domains/proteins and two integral membrane domains/proteins. This bacterial enzyme, characterized from Bacillus subtilis, exports Na+ ions out of the cell. cf. EC 7.2.2.1, Na+-transporting two-sector ATPase and EC 7.2.2.3, P-type Na+ transporter.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Cheng, J., Guffanti, A.A. and Krulwich, T.A. A two-gene ABC-type transport system that extrudes Na+ in Bacillus subtilis is induced by ethanol or protonophore. Mol. Microbiol. 23 (1997) 1107–1120. [DOI] [PMID: 9106203]
2.  Ogura, M., Tsukahara, K., Hayashi, K. and Tanaka, T. The Bacillus subtilis NatK-NatR two-component system regulates expression of the natAB operon encoding an ABC transporter for sodium ion extrusion. Microbiology 153 (2007) 667–675. [PMID: 17322186]
[EC 7.2.2.4 created 2018]
 
 
EC 7.2.2.5     
Accepted name: ABC-type Mn2+ transporter
Reaction: ATP + H2O + Mn2+-[manganese-binding protein][side 1] = ADP + phosphate + Mn2+[side 2] + [manganese-binding protein][side 1]
Other name(s): ABC-type manganese permease complex; manganese-transporting ATPase (ambiguous); ABC-type manganese transporter
Systematic name: ATP phosphohydrolase (ABC-type, Mn2+-importing)
Comments: ATP-binding cassette (ABC) type transporter, characterized by the presence of two similar ATP-binding domains. A bacterial enzyme that interacts with an extracytoplasmic substrate binding protein and mediates the import of Mn2+, Zn2+ and iron chelates.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Kuan, G., Dassa, E., Saurin, N., Hofnung, M. and Saier, M.H., Jr. Phylogenetic analyses of the ATP-binding constituents of bacterial extracytoplasmic receptor-dependent ABC-type nutrient uptake permeases. Res. Microbiol. 146 (1995) 271–278. [DOI] [PMID: 7569321]
2.  Saier, M.H., Jr. Molecular phylogeny as a basis for the classification of transport proteins from bacteria, archaea and eukarya. Adv. Microb. Physiol. 40 (1998) 81–136. [PMID: 9889977]
3.  Novak, R., Braun, J.S., Charpentier, E. and Tuomanen, E. Penicillin tolerance genes of Streptococcus pneumoniae: the ABC-type manganese permease complex Psa. Mol. Microbiol. 29 (1998) 1285–1296. [DOI] [PMID: 9767595]
4.  Kolenbrander, P.E., Andersen, R.N., Baker, R.A. and Jenkinson, H.F. The adhesion-assoiated aca operon in Streptococcus gordonii encodes an inducible high-affinity ABC transporter for Mn2+ uptake. J. Bacteriol. 180 (1998) 290–295. [PMID: 9440518]
[EC 7.2.2.5 created 2000 as EC 3.6.3.35, transferred 2018 to EC 7.2.2.5]
 
 
EC 7.2.2.6     
Accepted name: P-type K+ transporter
Reaction: ATP + H2O + K+[side 1] = ADP + phosphate + K+[side 2]
Other name(s): K+-translocating Kdp-ATPase; multi-subunit K+-transport ATPase; K+-transporting ATPase; potassium-importing ATPase; K+-importing ATPase
Systematic name: ATP phosphohydrolase (P-type, K+-importing)
Comments: A P-type ATPase that undergoes covalent phosphorylation during the transport cycle. A bacterial enzyme that is involved in K+ import. The probable stoichiometry is one ion per ATP hydrolysed.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Siebers, A. and Altendorf, K. Characterization of the phosphorylated intermediate of the K+-translocating Kdp-ATPase from Escherichia coli. J. Biol. Chem. 264 (1989) 5831–5838. [PMID: 2522440]
2.  Gassel, M., Siebers, A., Epstein, W. and Altendorf, K. Assembly of the Kdp complex, the multi-subunit K+-transport ATPase of Escherichia coli. Biochim. Biophys. Acta 1415 (1998) 77–84. [DOI] [PMID: 9858692]
3.  Huang, C.S., Pedersen, B.P. and Stokes, D.L. Crystal structure of the potassium-importing KdpFABC membrane complex. Nature 546 (2017) 681–685. [DOI] [PMID: 28636601]
[EC 7.2.2.6 created 2000 as EC 3.6.3.12, transferred 2018 to EC 7.2.2.6]
 
 
EC 7.2.2.7     
Accepted name: ABC-type Fe3+ transporter
Reaction: ATP + H2O + Fe3+-[iron-binding protein][side 1] = ADP + phosphate + Fe3+[side 2] + [iron-binding protein][side 1]
Other name(s): Fe3+-transporting ATPase
Systematic name: ATP phosphohydrolase (ABC-type, Fe3+-transporting)
Comments: ATP-binding cassette (ABC) type transporter, characterized by the presence of two similar ATP-binding domains. A bacterial enzyme that interacts with a periplasmic iron-binding protein to imports Fe3+ ions into the cytoplasm.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Angerer, A., Klupp, B. and Braun, V. Iron transport systems of Serratia marcescens. J. Bacteriol. 174 (1992) 1378–1387. [DOI] [PMID: 1531225]
2.  Kuan, G., Dassa, E., Saurin, N., Hofnung, M. and Saier, M.H., Jr. Phylogenetic analyses of the ATP-binding constituents of bacterial extracytoplasmic receptor-dependent ABC-type nutrient uptake permeases. Res. Microbiol. 146 (1995) 271–278. [DOI] [PMID: 7569321]
3.  Saier, M.H., Jr. Molecular phylogeny as a basis for the classification of transport proteins from bacteria, archaea and eukarya. Adv. Microb. Physiol. 40 (1998) 81–136. [PMID: 9889977]
4.  Khun, H.H., Kirby, S.D. and Lee, B.C. A Neisseria meningitidis fbp ABC mutant is incapable of using nonheme iron for growth. Infect. Immun. 66 (1998) 2330–2336. [PMID: 9573125]
[EC 7.2.2.7 created 2000 as EC 3.6.3.30, transferred 2018 to EC 7.2.2.7]
 
 
EC 7.2.2.8     
Accepted name: P-type Cu+ transporter
Reaction: ATP + H2O + Cu+[side 1] = ADP + phosphate + Cu+[side 2]
Other name(s): Cu+-exporting ATPase (ambiguous); copA (gene name); ATP7A (gene name); ATP7B (gene name)
Systematic name: ATP phosphohydrolase (P-type, Cu+-exporting)
Comments: A P-type ATPase that undergoes covalent phosphorylation during the transport cycle. This enzyme transports Cu+ or Ag+, and cannot transport the divalent ions, contrary to EC 7.2.2.9, P-type Cu2+ transporter, which mainly transports the divalent copper ion.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Fan, B. and Rosen, B.P. Biochemical characterization of CopA, the Escherichia coli Cu(I)-translocating P-type ATPase. J. Biol. Chem. 277 (2002) 46987–46992. [DOI] [PMID: 12351646]
2.  Banci, L., Bertini, I., Ciofi-Baffoni, S., D'Onofrio, M., Gonnelli, L., Marhuenda-Egea, F.C. and Ruiz-Duenas, F.J. Solution structure of the N-terminal domain of a potential copper-translocating P-type ATPase from Bacillus subtilis in the apo and Cu(I) loaded states. J. Mol. Biol. 317 (2002) 415–429. [DOI] [PMID: 11922674]
3.  Mandal, A.K. and Arguello, J.M. Functional roles of metal binding domains of the Archaeoglobus fulgidus Cu+-ATPase CopA. Biochemistry 42 (2003) 11040–11047. [DOI] [PMID: 12974640]
4.  Gonzalez-Guerrero, M. and Arguello, J.M. Mechanism of Cu+-transporting ATPases: soluble Cu+ chaperones directly transfer Cu+ to transmembrane transport sites. Proc. Natl. Acad. Sci. USA 105 (2008) 5992–5997. [DOI] [PMID: 18417453]
5.  Lewis, D., Pilankatta, R., Inesi, G., Bartolommei, G., Moncelli, M.R. and Tadini-Buoninsegni, F. Distinctive features of catalytic and transport mechanisms in mammalian sarco-endoplasmic reticulum Ca2+ ATPase (SERCA) and Cu+ (ATP7A/B) ATPases. J. Biol. Chem. 287 (2012) 32717–32727. [DOI] [PMID: 22854969]
6.  Tadini-Buoninsegni, F., Bartolommei, G., Moncelli, M.R., Pilankatta, R., Lewis, D. and Inesi, G. ATP dependent charge movement in ATP7B Cu+-ATPase is demonstrated by pre-steady state electrical measurements. FEBS Lett. 584 (2010) 4619–4622. [DOI] [PMID: 20965182]
7.  Mattle, D., Sitsel, O., Autzen, H.E., Meloni, G., Gourdon, P. and Nissen, P. On allosteric modulation of P-type Cu+-ATPases. J. Mol. Biol. 425 (2013) 2299–2308. [DOI] [PMID: 23500486]
[EC 7.2.2.8 created 2013 as EC 3.6.3.54, transferred 2018 to EC 7.2.2.8]
 
 
EC 7.2.2.9     
Accepted name: P-type Cu2+ transporter
Reaction: ATP + H2O + Cu2+[side 1] = ADP + phosphate + Cu2+[side 2]
Other name(s): Cu2+-exporting ATPase; copB (gene name)
Systematic name: ATP phosphohydrolase (P-type, Cu2+-exporting)
Comments: A P-type ATPase that undergoes covalent phosphorylation during the transport cycle. The enzyme from the termophilic archaeon Archaeoglobus fulgidus is involved in copper extrusion from the cell [1,2].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Mana-Capelli, S., Mandal, A.K. and Arguello, J.M. Archaeoglobus fulgidus CopB is a thermophilic Cu2+-ATPase: functional role of its histidine-rich-N-terminal metal binding domain. J. Biol. Chem. 278 (2003) 40534–40541. [DOI] [PMID: 12876283]
2.  Jayakanthan, S., Roberts, S.A., Weichsel, A., Arguello, J.M. and McEvoy, M.M. Conformations of the apo-, substrate-bound and phosphate-bound ATP-binding domain of the Cu(II) ATPase CopB illustrate coupling of domain movement to the catalytic cycle. Biosci Rep 32 (2012) 443–453. [DOI] [PMID: 22663904]
[EC 7.2.2.9 created 2000 as EC 3.6.3.4, modified 2013, transferred 2018 to EC 7.2.2.9]
 
 
EC 7.2.2.10     
Accepted name: P-type Ca2+ transporter
Reaction: ATP + H2O + Ca2+[side 1] = ADP + phosphate + Ca2+[side 2]
Other name(s): sarcoplasmic reticulum ATPase; sarco(endo)plasmic reticulum Ca2+-ATPase; calcium pump; Ca2+-pumping ATPase; plasma membrane Ca-ATPase; Ca2+-transporting ATPaseP-
Systematic name: ATP phosphohydrolase (P-type, Ca2+-transporting)
Comments: A P-type ATPase that undergoes covalent phosphorylation during the transport cycle. This enzyme family comprises three types of Ca2+-transporting enzymes that are found in the plasma membrane, the sarcoplasmic reticulum, in yeast, and in some bacteria. The enzymes from plasma membrane and from yeast have been shown to transport one ion per ATP hydrolysed whereas those from the sarcoplasmic reticulum transport two ions per ATP hydrolysed. In muscle cells Ca2+ is transported from the cytosol (side 1) into the sarcoplasmic reticulum (side 2).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Schatzmann, H.J. and Vicenzi, F.F. Calcium movements across the membrane of human red cells. J. Physiol. 201 (1969) 369–395. [DOI] [PMID: 4238381]
2.  Inesi, G., Watanabe, T., Coan, C. and Murphy, A. The mechanism of sarcoplasmic reticulum ATPase. Ann. N.Y. Acad. Sci. 402 (1982) 515–532. [DOI] [PMID: 6301340]
3.  Carafoli, E. The Ca2+ pump of the plasma membrane. J. Biol. Chem. 267 (1992) 2115–2118. [PMID: 1310307]
4.  MacLennan, D.H., Rice, W.J. and Green, N.M. The mechanism of Ca2+ transport by sarco(endo)plasmic reticulum Ca2+-ATPases. J. Biol. Chem. 272 (1997) 28815–28818. [DOI] [PMID: 9360942]
5.  Toyoshima, C., Nakasako, M., Nomura, H. and Ogawa, H. Crystal structure of the calcium pump of sarcoplasmic reticulum at 2.6 Å resolution. Nature 405 (2000) 647–655. [DOI] [PMID: 10864315]
6.  Andersen, J.L., Gourdon, P., Moller, J.V., Morth, J.P. and Nissen, P. Crystallization and preliminary structural analysis of the Listeria monocytogenes Ca(2+)-ATPase LMCA1. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 67 (2011) 718–722. [PMID: 21636921]
[EC 7.2.2.10 created 1984 as as EC 3.6.1.38, transferred 2000 to EC 3.6.3.8, modified 2001, modified 2011, transferred 2018 to EC 7.2.2.10]
 
 
EC 7.2.2.11     
Accepted name: ABC-type Ni2+ transporter
Reaction: ATP + H2O + Ni2+-[nickel-binding protein][side 1] = ADP + phosphate + Ni2+[side 2] + [nickel-binding protein][side 1]
Other name(s): nickel ABC transporter; nickel-transporting ATPase; ABC-type nickel-transporter
Systematic name: ATP phosphohydrolase (ABC-type, Ni2+-importing)
Comments: An ATP-binding cassette (ABC) type transporter, characterized by the presence of two similar ATP-binding domains/proteins and two integral membrane domains/proteins. A bacterial enzyme that interacts with an extracytoplasmic substrate binding protein and mediates the high affinity uptake of Ni2+; the identity of the nickel species transported has not been conclusively established. Does not undergo phosphorylation during the transport process.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Kuan, G., Dassa, E., Saurin, N., Hofnung, M. and Saier, M.H., Jr. Phylogenetic analyses of the ATP-binding constituents of bacterial extracytoplasmic receptor-dependent ABC-type nutrient uptake permeases. Res. Microbiol. 146 (1995) 271–278. [DOI] [PMID: 7569321]
2.  Hendricks, J.K. and Mobley, H.L. Helicobacter pylori ABC transporter: effect of allelic exchange mutagenesis on urease activity. J. Bacteriol. 179 (1997) 5892–5902. [DOI] [PMID: 9294450]
3.  Saier, M.H., Jr. Molecular phylogeny as a basis for the classification of transport proteins from bacteria, archaea and eukarya. Adv. Microb. Physiol. 40 (1998) 81–136. [PMID: 9889977]
4.  Griffiths, J.K. and Sansom, C.E. The Transporter Factsbook, Academic Press, San Diego, 1998.
[EC 7.2.2.11 created 2000 as EC 3.6.3.24, transferred 2018 to EC 7.2.2.11]
 
 
EC 7.2.2.12     
Accepted name: P-type Zn2+ transporter
Reaction: ATP + H2O + Zn2+[side 1] = ADP + phosphate + Zn2+[side 2]
Other name(s): Zn(II)-translocating P-type ATPase; Zn2+-exporting ATPase; P1B-type ATPase; HMA4 (gene name); zntA (gene name)
Systematic name: ATP phosphohydrolase (P-type, Zn2+-exporting)
Comments: A P-type ATPase that undergoes covalent phosphorylation during the transport cycle. The enzyme, present in prokaryotes and photosynthetic eukaryotes, exports Zn2+ and the related cations Cd2+ and Pb2+.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Beard, S.J., Hashim, R., Membrillo-Hernández, J., Hughes, M.N. and Poole, R.K. Zinc(II) tolerance in Escherichia coli K-12: evidence that the zntA gene (o732) encodes a cation transport ATPase. Mol. Microbiol. 25 (1997) 883–891. [DOI] [PMID: 9364914]
2.  Rensing, C., Mitra, B. and Rosen, B.P. The zntA gene of Escherichia coli encodes a Zn(II)-translocating P-type ATPase. Proc. Natl. Acad. Sci. USA 94 (1997) 14326–14331. [DOI] [PMID: 9405611]
3.  Rensing, C., Sun, Y., Mitra, B. and Rosen, B.P. Pb(II)-translocating P-type ATPases. J. Biol. Chem. 273 (1998) 32614–32617. [DOI] [PMID: 9830000]
4.  Mills, R.F., Francini, A., Ferreira da Rocha, P.S., Baccarini, P.J., Aylett, M., Krijger, G.C. and Williams, L.E. The plant P1B-type ATPase AtHMA4 transports Zn and Cd and plays a role in detoxification of transition metals supplied at elevated levels. FEBS Lett. 579 (2005) 783–791. [DOI] [PMID: 15670847]
5.  Eren, E. and Argüello, J.M. Arabidopsis HMA2, a divalent heavy metal-transporting P(IB)-type ATPase, is involved in cytoplasmic Zn2+ homeostasis. Plant Physiol. 136 (2004) 3712–3723. [DOI] [PMID: 15475410]
[EC 7.2.2.12 created 2000 as EC 3.6.3.5, modified 2001, modified 2006, transferred 2018 to EC 7.2.2.12]
 
 
EC 7.2.2.13     
Accepted name: Na+/K+-exchanging ATPase
Reaction: ATP + H2O + Na+[side 1] + K+[side 2] = ADP + phosphate + Na+[side 2] + K+[side 1]
Other name(s): (Na+ + K+)-activated ATPase; Na,K-activated ATPase; Na,K-pump; Na+,K+-ATPase; sodium/potassium-transporting ATPase; Na+/K+-exchanging ATPase
Systematic name: ATP phosphohydrolase (P-type, Na+/K+-exchanging)
Comments: A P-type ATPase that undergoes covalent phosphorylation during the transport cycle. This is a plasma membrane enzyme, ubiquitous in animal cells, that catalyses the efflux of three Na+ and influx of two K+ per ATP hydrolysed. It is involved in generating the plasma membrane electrical potential.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Skou, J.C. The influence of some cations on an adenosinetriphosphatase from peripheral nerve. Biochim. Biophys. Acta 23 (1957) 394–401. [DOI] [PMID: 13412736]
2.  Post, R.L., Sen, A.K. and Rosenthal, A.S. A phosphorylated intermediate in adenosine triphosphate-dependent sodium and potassium transport across kidney membrane. J. Biol. Chem. 240 (1965) 1437–1445. [PMID: 14284759]
3.  Skou, J.C. The energy-coupled exchange of Na+ for K+ across the cell membrane. The Na+,K+ pump. FEBS Lett. 268 (1990) 314–324. [DOI] [PMID: 2166689]
4.  Castillo, J.P., Rui, H., Basilio, D., Das, A., Roux, B., Latorre, R., Bezanilla, F. and Holmgren, M. Mechanism of potassium ion uptake by the Na+/K+-ATPase. Nat. Commun. 6:7622 (2015). [PMID: 26205423]
[EC 7.2.2.13 created 1984 EC 3.6.1.37, transferred 2000 to EC 3.6.3.9, modified 2001, transferred 2018 to EC 7.2.2.13]
 
 
EC 7.2.2.14     
Accepted name: P-type Mg2+ transporter
Reaction: ATP + H2O + Mg2+[side 1] = ADP + phosphate + Mg2+[side 2]
Other name(s): Mg2+-transporting P-type ATPase; Mg2+-transporting ATPase; Mg2+-importing ATPase; magnesium-translocating P-type ATPase; mgtA (gene name); mgtB (gene name)
Systematic name: ATP phosphohydrolase (P-type, Mg2+-importing)
Comments: A P-type ATPase that undergoes covalent phosphorylation during the transport cycle. A bacterial enzyme that imports Mg2+ with, rather than against, the Mg2+ electrochemical gradient. The enzyme is also involved in Ni2+ import.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Snavely, M.D., Miller, C.G. and Maguire, M.E. The mgtB Mg2+ transport locus of Salmonella typhimurium encodes a P-type ATPase. J. Biol. Chem 266 (1991) 815–823. [PMID: 1824701]
2.  Maguire, M.E. MgtA and MgtB: prokaryotic P-type ATPases that mediate Mg2+ influx. J. Bioenerg. Biomembr. 24 (1992) 319–328. [PMID: 1328179]
3.  Tao, T., Snavely, M.D., Farr, S.G. and Maguire, M.E. Magnesium transport in Salmonella typhimurium: mtgA encodes a P-type ATPase and is regulated by Mg2+ in a manner similar to that of the mgtB P-type ATPase. J. Bacteriol. 177 (1995) 2654–2662. [DOI] [PMID: 7751273]
[EC 7.2.2.14 created 2000 as EC 3.6.3.2, modified 2001, transferred 2018 to EC 7.2.2.14]
 
 
EC 7.2.2.15     
Accepted name: P-type Ag+ transporter
Reaction: ATP + H2O + Ag+[side 1] = ADP + phosphate + Ag+[side 2]
Other name(s): Ag+-exporting ATPase
Systematic name: ATP phosphohydrolase (P-type, Ag+-exporting)
Comments: A P-type ATPase that exports Ag+ ions from some bacteria, archaea as well as from some animal tissues. The proteins also transport Cu+ ions (cf. EC 7.2.2.8, P-type Cu+ transporter).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Gupta, A., Matsui, K., Lo, J.F. and Silver, S. Molecular basis for resistance to silver cations in Salmonella. Nature Med. 5 (1999) 183–188. [DOI] [PMID: 9930866]
2.  Bury, N.R., Grosell, M., Grover, A.K. and Wood, C.M. ATP-dependent silver transport across the basolateral membrane of rainbow trout gills. Toxicol. Appl. Pharmacol. 159 (1999) 1–8. [DOI] [PMID: 10448119]
[EC 7.2.2.15 created 2000 as EC 3.6.3.53, transferred 2018 to EC 7.2.2.15]
 
 
EC 7.2.2.16     
Accepted name: ABC-type ferric hydroxamate transporter
Reaction: ATP + H2O + Fe3+-hydroxamate complex-[hydroxamate-binding protein][side 1] = ADP + phosphate + Fe3+-hydroxamate complex[side 2] + [hydroxamate-binding protein][side 1]
Other name(s): iron(III) hydroxamate transporting ATPase; iron(III) hydroxamate ABC transporter; fhuCDB (gene names)
Systematic name: ATP phosphohydrolase [ABC-type, iron(III) hydroxamate-importing]
Comments: An ATP-binding cassette (ABC) type transporter, characterized by the presence of two similar ATP-binding domains/proteins and two integral membrane domains/proteins. A bacterial enzyme that interacts with an extracytoplasmic substrate binding protein and mediates the import of Fe3+-complexed hydroxamate siderophores such as coprogen, ferrichrome and the ferric hydroxamate antibiotic, albomycin.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Koster, W. Iron(III) hydroxamate transport across the cytoplasmic membrane of Escherichia coli. Biol. Met. 4 (1991) 23–32. [PMID: 1830209]
2.  Speziali, C.D., Dale, S.E., Henderson, J.A., Vines, E.D. and Heinrichs, D.E. Requirement of Staphylococcus aureus ATP-binding cassette-ATPase FhuC for iron-restricted growth and evidence that it functions with more than one iron transporter. J. Bacteriol. 188 (2006) 2048–2055. [PMID: 16513734]
[EC 7.2.2.16 created 2000 as EC 3.6.3.34, part transferred 2018 to EC 7.2.2.16]
 
 
EC 7.2.2.17     
Accepted name: ABC-type ferric enterobactin transporter
Reaction: ATP + H2O + Fe3+-enterobactin complex-[enterobactin-binding protein][side 1] = ADP + phosphate + Fe3+-enterobactin complex[side 2] + [enterobactin-binding protein][side 1]
Other name(s): ferric enterobactin transporting ATPase; ferric enterobactin ABC transporter; fepBCDG (gene names)
Systematic name: ATP phosphohydrolase (ABC-type, iron(III) enterobactin-importing)
Comments: An ATP-binding cassette (ABC) type transporter, characterized by the presence of two similar ATP-binding domains/proteins and two integral membrane domains/proteins. A bacterial enzyme that interacts with an extracytoplasmic substrate binding protein and mediates the high affinity uptake of Fe3+-enterobactin complexes.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Chenault, S.S. and Earhart, C.F. Organization of genes encoding membrane proteins of the Escherichia coli ferrienterobactin permease. Mol. Microbiol. 5 (1991) 1405–1413. [PMID: 1787794]
2.  Shea, C.M. and McIntosh, M.A. Nucleotide sequence and genetic organization of the ferric enterobactin transport system: homology to other periplasmic binding-protein-dependent systems in Escherichia coli. Mol. Microbiol. 5 (1991) 1415–1428. [DOI] [PMID: 1838574]
[EC 7.2.2.17 created 2000 as EC 3.6.3.34, part transferred 2018 to EC 7.2.2.17]
 
 
EC 7.2.2.18     
Accepted name: ABC-type ferric citrate transporter
Reaction: ATP + H2O + Fe3+-dicitrate-[dicitrate-binding protein][side 1] = ADP + phosphate + Fe3+-dicitrate[side 2] + [dicitrate-binding protein][side 1]
Other name(s): ferric citrate transporting ATPase; ferric citrate ABC transporter; fecBCDE (gene names)
Systematic name: ATP phosphohydrolase (ABC-type, iron(III) dicitrate-importing)
Comments: An ATP-binding cassette (ABC) type transporter, characterized by the presence of two similar ATP-binding domains/proteins and two integral membrane domains/proteins. The enzyme from Escherichia coli interacts with a periplasmic substrate binding protein and mediates the high affinity uptake of Fe3+-citrate in the form of a mononuclear (containing one iron(III) ion and two citrate molecules) or dinuclear (containing 2 iron(III) ions) complexes.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Staudenmaier, H., Van Hove, B., Yaraghi, Z. and Braun, V. Nucleotide sequences of the fecBCDE genes and locations of the proteins suggest a periplasmic-binding-protein-dependent transport mechanism for iron(III) dicitrate in Escherichia coli. J. Bacteriol. 171 (1989) 2626–2633. [PMID: 2651410]
2.  Banerjee, S., Paul, S., Nguyen, L.T., Chu, B.C. and Vogel, H.J. FecB, a periplasmic ferric-citrate transporter from E. coli, can bind different forms of ferric-citrate as well as a wide variety of metal-free and metal-loaded tricarboxylic acids. Metallomics 8 (2016) 125–133. [PMID: 26600288]
[EC 7.2.2.18 created 2000 as EC 3.6.3.34, part transferred 2018 to EC 7.2.2.18]
 
 
EC 7.2.2.19     
Accepted name: H+/K+-exchanging ATPase
Reaction: ATP + H2O + H+[side 1] + K+[side 2] = ADP + phosphate + H+[side 2] + K+[side 1]
Other name(s): H+-K+-ATPase; H,K-ATPase; (K+ + H+)-ATPase
Systematic name: ATP phosphohydrolase (P-type,H+/K+-exchanging)
Comments: A P-type ATPase that undergoes covalent phosphorylation during the transport cycle. A gastric mucosal enzyme that catalyses the efflux of one H+ and the influx of one K+ per ATP hydrolysed.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Sachs, G., Collier, R.H., Shoemaker, R.L. and Hirschowitz, B.I. The energy source for gastric H+ secretion. Biochim. Biophys. Acta 162 (1968) 210–219. [DOI] [PMID: 5682852]
2.  Hersey, S.J., Perez, A. Matheravidathu, S. and Sachs, G. Gastric H+-K+-ATPase in situ: evidence for compartmentalization. Am. J. Physiol. 257 (1989) G539–G547. [DOI] [PMID: 2552824]
3.  Rabon, E.C. and Reuben, M.A. The mechanism and structure of the gastric H,K-ATPase. Annu. Rev. Physiol. 52 (1990) 321–344. [DOI] [PMID: 2158765]
[EC 7.2.2.19 created 1984 as EC 3.6.1.36, transferred 2000 to EC 3.6.3.10, transferred 2018 to EC 7.2.2.19]
 
 
EC 7.2.2.20     
Accepted name: ABC-type Zn2+ transporter
Reaction: ATP + H2O + Zn2+-[zinc-binding protein][side 1] = ADP + phosphate + Zn2+[side 2] + [zinc-binding protein][side 1]
Other name(s): Zn2+-transporting ATPase; Zn2+ ABC transporter; znuABC (gene names)
Systematic name: ATP phosphohydrolase (ABC-type, Zn2+-importing)
Comments: ABC-type (ATP-binding cassette-type) transporter, characterized by the presence of two similar ATP-binding domains/proteins and two integral membrane domains/proteins. A bacterial enzyme that interacts with an extracytoplasmic substrate binding protein and mediates the high-affinity import of Zn2+.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Patzer, S.I. and Hantke, K. The ZnuABC high-affinity zinc uptake system and its regulator Zur in Escherichia coli. Mol. Microbiol. 28 (1998) 1199–1210. [PMID: 9680209]
2.  Hantke, K. Bacterial zinc uptake and regulators. Curr. Opin. Microbiol. 8 (2005) 196–202. [PMID: 15802252]
[EC 7.2.2.20 created 2019]
 
 
EC 7.2.4.1     
Accepted name: carboxybiotin decarboxylase
Reaction: a carboxybiotinyl-[protein] + n Na+[side 1] + H+[side 2] = CO2 + a biotinyl-[protein] + n Na+[side 2] (n = 1–2)
For diagram of the reactions involved in the multienzyme complex malonate decarboxylase, click here
Other name(s): MadB; carboxybiotin protein decarboxylase
Systematic name: carboxybiotinyl-[protein] carboxy-lyase
Comments: The integral membrane protein MadB from the anaerobic bacterium Malonomonas rubra is a component of the multienzyme complex EC 4.1.1.89, biotin-dependent malonate decarboxylase. The free energy of the decarboxylation reaction is used to pump Na+ out of the cell. The enzyme is a member of the Na+-translocating decarboxylase family, other members of which include EC 7.2.4.2 [oxaloacetate decarboxylase (Na+ extruding)] and EC 7.2.4.3 [(S)-methylmalonyl-CoA decarboxylase (sodium-transporting)] [2].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Berg, M., Hilbi, H. and Dimroth, P. Sequence of a gene cluster from Malonomonas rubra encoding components of the malonate decarboxylase Na+ pump and evidence for their function. Eur. J. Biochem. 245 (1997) 103–115. [DOI] [PMID: 9128730]
2.  Dimroth, P. and Hilbi, H. Enzymic and genetic basis for bacterial growth on malonate. Mol. Microbiol. 25 (1997) 3–10. [DOI] [PMID: 11902724]
[EC 7.2.4.1 created 2008 as EC 4.3.99.2, transferred 2018 to EC 7.2.4.1]
 
 
EC 7.2.4.2     
Accepted name: oxaloacetate decarboxylase (Na+ extruding)
Reaction: oxaloacetate + 2 Na+[side 1] = pyruvate + CO2 + 2 Na+[side 2]
Other name(s): oxaloacetate β-decarboxylase (ambiguous); oxalacetic acid decarboxylase (ambiguous); oxalate β-decarboxylase (ambiguous); oxaloacetate carboxy-lyase (ambiguous)
Systematic name: oxaloacetate carboxy-lyase (pyruvate-forming; Na+-extruding)
Comments: The enzyme from the bacterium Klebsiella aerogenes is a biotinyl protein and also decarboxylates glutaconyl-CoA and methylmalonyl-CoA. The process is accompanied by the extrusion of two sodium ions from cells. Some animal enzymes require Mn2+. Differs from EC 4.1.1.112 (oxaloacetate decarboxylase) for which there is no evidence for involvement in Na+ transport.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9024-98-0
References:
1.  Dimroth, P. Characterization of a membrane-bound biotin-containing enzyme: oxaloacetate decarboxylase from Klebsiella aerogenes. Eur. J. Biochem. 115 (1981) 353–358. [DOI] [PMID: 7016536]
2.  Dimroth, P. The role of biotin and sodium in the decarboxylation of oxaloacetate by the membrane-bound oxaloacetate decarboxylase from Klebsiella aerogenes. Eur. J. Biochem. 121 (1982) 435–441. [DOI] [PMID: 7037395]
[EC 7.2.4.2 created 1961 as EC 4.1.1.3, modified 1986, modified 2000, transferred 2018 to EC 7.2.4.2]
 
 
EC 7.2.4.3     
Accepted name: (S)-methylmalonyl-CoA decarboxylase (sodium-transporting)
Reaction: (S)-methylmalonyl-CoA + Na+[side 1] + H+[side 2] = propanoyl-CoA + CO2 + Na+[side 2]
Other name(s): methylmalonyl-coenzyme A decarboxylase (ambiguous); (S)-2-methyl-3-oxopropanoyl-CoA carboxy-lyase (incorrect); (S)-methylmalonyl-CoA carboxy-lyase (ambiguous)
Systematic name: (S)-methylmalonyl-CoA carboxy-lyase (propanoyl-CoA-forming, sodium-transporting)
Comments: This bacterial enzyme couples the decarboxylation of (S)-methylmalonyl-CoA to propanoyl-CoA to the vectorial transport of Na+ across the cytoplasmic membrane, thereby creating a sodium ion motive force that is used for ATP synthesis. It is a membrane-associated biotin protein and is strictly dependent on sodium ions for activity.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 37289-44-4
References:
1.  Galivan, J.H. and Allen, S.H.G. Methylmalonyl coenzyme A decarboxylase. Its role in succinate decarboxylation by Micrococcus lactilyticus. J. Biol. Chem. 243 (1968) 1253–1261. [PMID: 5646172]
2.  Hilpert, W. and Dimroth, P. Conversion of the chemical energy of methylmalonyl-CoA decarboxylation into a Na+ gradient. Nature 296 (1982) 584–585. [PMID: 7070502]
3.  Hoffmann, A., Hilpert, W. and Dimroth, P. The carboxyltransferase activity of the sodium-ion-translocating methylmalonyl-CoA decarboxylase of Veillonella alcalescens. Eur. J. Biochem. 179 (1989) 645–650. [DOI] [PMID: 2920730]
4.  Huder, J.B. and Dimroth, P. Expression of the sodium ion pump methylmalonyl-coenzyme A-decarboxylase from Veillonella parvula and of mutated enzyme specimens in Escherichia coli. J. Bacteriol. 177 (1995) 3623–3630. [PMID: 7601825]
5.  Bott, M., Pfister, K., Burda, P., Kalbermatter, O., Woehlke, G. and Dimroth, P. Methylmalonyl-CoA decarboxylase from Propionigenium modestum--cloning and sequencing of the structural genes and purification of the enzyme complex. Eur. J. Biochem. 250 (1997) 590–599. [PMID: 9428714]
[EC 7.2.4.3 created 1972 as EC 4.1.1.41, modified 1983, modified 1986, transferred 2018 to EC 7.2.4.3]
 
 
EC 7.2.4.4     
Accepted name: biotin-dependent malonate decarboxylase
Reaction: malonate + H+ + Na+ [side 1] = acetate + CO2 + Na+ [side 2]
For diagram of the reactions involved in the multienzyme complex malonate decarboxylase, click here
Other name(s): malonate decarboxylase (with biotin); malonate decarboxylase (ambiguous)
Systematic name: malonate carboxy-lyase (biotin-dependent)
Comments: Two types of malonate decarboxylase are currently known, both of which form multienzyme complexes. The enzyme described here is a membrane-bound biotin-dependent, Na+-translocating enzyme [6]. The other type is a biotin-independent cytosolic protein (cf. EC 4.1.1.88, biotin-independent malonate decarboxylase). As free malonate is chemically rather inert, it has to be activated prior to decarboxylation. Both enzymes achieve this by exchanging malonate with an acetyl group bound to an acyl-carrier protiein (ACP), to form malonyl-ACP and acetate, with subsequent decarboxylation regenerating the acetyl-bound form of the enzyme. The ACP subunit of both enzymes differs from that found in fatty-acid biosynthesis by having phosphopantethine attached to a serine side-chain as 2-(5-triphosphoribosyl)-3-dephospho-CoA rather than as phosphopantetheine 4′-phosphate. In the anaerobic bacterium Malonomonas rubra, the components of the multienzyme complex/enzymes involved in carrying out the reactions of this enzyme are as follows: MadA (EC 2.3.1.187, acetyl-S-ACP:malonate ACP transferase), MadB (EC 7.2.4.1, carboxybiotin decarboxylase), MadC/MadD (EC 2.1.3.10, malonyl-S-ACP:biotin-protein carboxyltransferase) and MadH (EC 6.2.1.35, acetate--[acyl-carrier protein] ligase). Two other components that are involved are MadE, the acyl-carrier protein and MadF, the biotin protein. The carboxy group is lost with retention of configuration [5].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Hilbi, H., Dehning, I., Schink, B. and Dimroth, P. Malonate decarboxylase of Malonomonas rubra, a novel type of biotin-containing acetyl enzyme. Eur. J. Biochem. 207 (1992) 117–123. [DOI] [PMID: 1628643]
2.  Hilbi, H. and Dimroth, P. Purification and characterization of a cytoplasmic enzyme component of the Na+-activated malonate decarboxylase system of Malonomonas rubra: acetyl-S-acyl carrier protein: malonate acyl carrier protein-SH transferase. Arch. Microbiol. 162 (1994) 48–56. [PMID: 18251085]
3.  Berg, M., Hilbi, H. and Dimroth, P. The acyl carrier protein of malonate decarboxylase of Malonomonas rubra contains 2′-(5"-phosphoribosyl)-3′-dephosphocoenzyme A as a prosthetic group. Biochemistry 35 (1996) 4689–4696. [DOI] [PMID: 8664258]
4.  Berg, M., Hilbi, H. and Dimroth, P. Sequence of a gene cluster from Malonomonas rubra encoding components of the malonate decarboxylase Na+ pump and evidence for their function. Eur. J. Biochem. 245 (1997) 103–115. [DOI] [PMID: 9128730]
5.  Micklefield, J., Harris, K.J., Gröger, S., Mocek, U., Hilbi, H., Dimroth, P. and Floss, H.G. Stereochemical course of malonate decarboxylase in Malonomonas rubra has biotin decarboxylation with retention. J. Am. Chem. Soc. 117 (1995) 1153–1154.
6.  Kim, Y.S. Malonate metabolism: biochemistry, molecular biology, physiology, and industrial application. J. Biochem. Mol. Biol. 35 (2002) 443–451. [PMID: 12359084]
7.  Dimroth, P. and Hilbi, H. Enzymic and genetic basis for bacterial growth on malonate. Mol. Microbiol. 25 (1997) 3–10. [DOI] [PMID: 11902724]
[EC 7.2.4.4 created 2008 as EC 4.1.1.89, transferred 2018 to EC 7.2.4.4]
 
 
EC 7.2.4.5     
Accepted name: glutaconyl-CoA decarboxylase
Reaction: (2E)-4-carboxybut-2-enoyl-CoA + Na+[side 1] = (2E)-but-2-enoyl-CoA + CO2 + Na+[side 2]
Glossary: (E)-glutaconyl-CoA = (2E)-4-carboxybut-2-enoyl-CoA
Other name(s): glutaconyl coenzyme A decarboxylase; pent-2-enoyl-CoA carboxy-lyase; 4-carboxybut-2-enoyl-CoA carboxy-lyase
Systematic name: (2E)-4-carboxybut-2-enoyl-CoA carboxy-lyase [(2E)-but-2-enoyl-CoA-forming]
Comments: The enzyme from the bacterium Acidaminococcus fermentans is a biotinyl-protein, requires Na+, and acts as a sodium pump. Prior to the Na+-dependent decarboxylation, the carboxylate is transferred to biotin in a Na+-independent manner. The conserved lysine, to which biotin forms an amide bond, is located 34 amino acids before the C-terminus, flanked on both sides by two methionine residues, which are conserved in every biotin-dependent enzyme.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, UM-BBD, CAS registry number: 84399-93-9
References:
1.  Buckel, W.S. and Semmler, R. Purification, characterisation and reconstitution of glutaconyl-CoA decarboxylase, a biotin-dependent sodium pump from anaerobic bacteria. Eur. J. Biochem. 136 (1983) 427–434. [DOI] [PMID: 6628393]
2.  Buckel, W. Sodium ion-translocating decarboxylases. Biochim. Biophys. Acta 1505 (2001) 15–27. [DOI] [PMID: 11248185]
[EC 7.2.4.5 created 1986 as EC 4.1.1.70, modified 2003, transferred 2019 to EC 7.2.4.5]
 
 
EC 7.3.2.1     
Accepted name: ABC-type phosphate transporter
Reaction: ATP + H2O + phosphate-[phosphate-binding protein][side 1] = ADP + phosphate + phosphate[side 2] + [phosphate-binding protein][side 1]
Other name(s): phosphate ABC transporter; phosphate-transporting ATPase (ambiguous)
Systematic name: ATP phosphohydrolase (ABC-type, phosphate-importing)
Comments: An ATP-binding cassette (ABC) type transporter, characterized by the presence of two similar ATP-binding domains/proteins and two integral membrane domains/proteins. A bacterial enzyme that interacts with an extracytoplasmic substrate binding protein and mediates the high affinity uptake of phosphate anions. Unlike P-type ATPases, it does not undergo phosphorylation during the transport process.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Webb, D.C., Rosenberg, H. and Cox, G.B. Mutational analysis of the Escherichia coli phosphate-specific transport system, a member of the traffic ATPase (or ABC) family of membrane transporters. A role for proline residues in transmembrane helices. J. Biol. Chem. 267 (1992) 24661–24668. [PMID: 1447208]
2.  Kuan, G., Dassa, E., Saurin, N., Hofnung, M. and Saier, M.H., Jr. Phylogenetic analyses of the ATP-binding constituents of bacterial extracytoplasmic receptor-dependent ABC-type nutrient uptake permeases. Res. Microbiol. 146 (1995) 271–278. [DOI] [PMID: 7569321]
3.  Braibant, M., LeFevre, P., de Wit, L., Ooms, J., Peirs, P., Huygen, K., Wattiez, R. and Content, J. Identification of a second Mycobacterium tuberculosis gene cluster encoding proteins of an ABC phosphate transporter. FEBS Lett. 394 (1996) 206–212. [DOI] [PMID: 8843165]
4.  Saier, M.H., Jr. Molecular phylogeny as a basis for the classification of transport proteins from bacteria, archaea and eukarya. Adv. Microb. Physiol. 40 (1998) 81–136. [PMID: 9889977]
5.  Griffiths, J.K. and Sansom, C.E. The Transporter Factsbook, Academic Press, San Diego, 1998.
[EC 7.3.2.1 created 2000 as EC 3.6.3.27, transferred 2018 to EC 7.3.2.1]
 
 
EC 7.3.2.2     
Accepted name: ABC-type phosphonate transporter
Reaction: ATP + H2O + phosphonate-[phosphonate-binding protein][side 1] = ADP + phosphate + phosphonate[side 2] + [phosphonate-binding protein][side 1]
Other name(s): phosphonate-transporting ATPase (ambiguous)
Systematic name: ATP phosphohydrolase (ABC-type, phosphonate-importing)
Comments: An ATP-binding cassette (ABC) type transporter, characterized by the presence of two similar ATP-binding domains/proteins and two integral membrane domains/proteins. The enzyme, found in bacteria, interacts with an extracytoplasmic substrate binding protein and mediates the import of phosphonate and organophosphate anions.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Wanner, B.L. and Metcalf, W.W. Molecular genetic studies of a 10.9-kb operon in Escherichia coli for phosphonate uptake and biodegradation. FEMS Microbiol. Lett. 79 (1992) 133–139. [PMID: 1335942]
2.  Kuan, G., Dassa, E., Saurin, N., Hofnung, M. and Saier, M.H., Jr. Phylogenetic analyses of the ATP-binding constituents of bacterial extracytoplasmic receptor-dependent ABC-type nutrient uptake permeases. Res. Microbiol. 146 (1995) 271–278. [DOI] [PMID: 7569321]
3.  Saier, M.H., Jr. Molecular phylogeny as a basis for the classification of transport proteins from bacteria, archaea and eukarya. Adv. Microb. Physiol. 40 (1998) 81–136. [PMID: 9889977]
4.  Griffiths, J.K. and Sansom, C.E. The Transporter Factsbook, Academic Press, San Diego, 1998.
[EC 7.3.2.2 created 2000 as EC 3.6.3.28, transferred 2018 to EC 7.3.2.2]
 
 
EC 7.3.2.3     
Accepted name: ABC-type sulfate transporter
Reaction: ATP + H2O + sulfate-[sulfate-binding protein][side 1] = ADP + phosphate + sulfate[side 2] + [sulfate-binding protein][side 1]
Other name(s): sulfate ABC transporter; sulfate-transporting ATPase (ambiguous)
Systematic name: ATP phosphohydrolase (ABC-type, sulfate-importing)
Comments: An ATP-binding cassette (ABC) type transporter, characterized by the presence of two similar ATP-binding domains/proteins and two integral membrane domains/proteins. The enzyme from Escherichia coli can interact with either of two periplasmic binding proteins and mediates the high affinity uptake of sulfate and thiosulfate. May also be involved in the uptake of selenite, selenate and possibly molybdate. Does not undergo phosphorylation during the transport.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Sirko, A., Zatyka, M., Sadowy, E. and Hulanicka, D. Sulfate and thiosulfate transport in Escherichia coli K-12: evidence for a functional overlapping of sulfate- and thiosulfate-binding proteins. J. Bacteriol. 177 (1995) 4134–4136. [DOI] [PMID: 7608089]
2.  Kuan, G., Dassa, E., Saurin, N., Hofnung, M. and Saier, M.H., Jr. Phylogenetic analyses of the ATP-binding constituents of bacterial extracytoplasmic receptor-dependent ABC-type nutrient uptake permeases. Res. Microbiol. 146 (1995) 271–278. [DOI] [PMID: 7569321]
3.  Saier, M.H., Jr. Molecular phylogeny as a basis for the classification of transport proteins from bacteria, archaea and eukarya. Adv. Microb. Physiol. 40 (1998) 81–136. [PMID: 9889977]
[EC 7.3.2.3 created 2000 as EC 3.6.3.25, transferred 2018 to EC 7.3.2.3]
 
 
EC 7.3.2.4     
Accepted name: ABC-type nitrate transporter
Reaction: ATP + H2O + nitrate-[nitrate-binding protein][side 1] = ADP + phosphate + nitrate[side 2] + [nitrate-binding protein][side 1]
Other name(s): nitrate-transporting ATPase (ambiguous)
Systematic name: ATP phosphohydrolase (ABC-type, nitrate-importing)
Comments: An ATP-binding cassette (ABC) type transporter, characterized by the presence of two similar ATP-binding domains/proteins and two integral membrane domains/proteins. The enzyme, found in bacteria, interacts with an extracytoplasmic substrate binding protein and mediates the import of nitrate, nitrite, and cyanate.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Omata, T. Structure, function and regulation of the nitrate transport system of the cyanobacterium Synechococcus sp. PCC7942. Plant Cell Physiol. 36 (1995) 207–213. [PMID: 7767600]
2.  Kuan, G., Dassa, E., Saurin, N., Hofnung, M. and Saier, M.H., Jr. Phylogenetic analyses of the ATP-binding constituents of bacterial extracytoplasmic receptor-dependent ABC-type nutrient uptake permeases. Res. Microbiol. 146 (1995) 271–278. [DOI] [PMID: 7569321]
3.  Saier, M.H., Jr. Molecular phylogeny as a basis for the classification of transport proteins from bacteria, archaea and eukarya. Adv. Microb. Physiol. 40 (1998) 81–136. [PMID: 9889977]
4.  Griffiths, J.K. and Sansom, C.E. The Transporter Factsbook, Academic Press, San Diego, 1998.
[EC 7.3.2.4 created 2000 as EC 3.6.3.26, transferred 2018 to EC 7.3.2.4]
 
 
EC 7.3.2.5     
Accepted name: ABC-type molybdate transporter
Reaction: ATP + H2O + molybdate-[molybdate-binding protein][side 1] = ADP + phosphate + molybdate[side 2] + [molybdate-binding protein][side 1]
Glossary: molybdate = tetraoxidomolybdate(2-) = MoO42-
Other name(s): molybdate ABC transporter; molybdate-transporting ATPase
Systematic name: ATP phosphohydrolase (ABC-type, molybdate-importing)
Comments: An ATP-binding cassette (ABC) type transporter, characterized by the presence of two similar ATP-binding domains/proteins and two integral membrane domains/proteins. The enzyme, found in bacteria, interacts with an extracytoplasmic substrate binding protein and mediates the high-affinity import of molybdate and tungstate. Does not undergo phosphorylation during the transport process.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Kuan, G., Dassa, E., Saurin, N., Hofnung, M. and Saier, M.H., Jr. Phylogenetic analyses of the ATP-binding constituents of bacterial extracytoplasmic receptor-dependent ABC-type nutrient uptake permeases. Res. Microbiol. 146 (1995) 271–278. [DOI] [PMID: 7569321]
2.  Grunden, A.M. and Shanmugam, K.T. Molybdate transport and regulation in bacteria. Arch. Mikrobiol. 168 (1997) 345–354. [PMID: 9325422]
3.  Saier, M.H., Jr. Molecular phylogeny as a basis for the classification of transport proteins from bacteria, archaea and eukarya. Adv. Microb. Physiol. 40 (1998) 81–136. [PMID: 9889977]
4.  Griffiths, J.K. and Sansom, C.E. The Transporter Factsbook, Academic Press, San Diego, 1998.
[EC 7.3.2.5 created 2000 as EC 3.6.3.29, transferred 2018 to EC 7.3.2.5]
 
 
EC 7.3.2.6     
Accepted name: ABC-type tungstate transporter
Reaction: ATP + H2O + tungstate-[tungstate-binding protein][side 1] = ADP + phosphate + tungstate[side 2] + [tungstate-binding protein][side 1]
Other name(s): tungstate transporter; tungstate-importing ATPase; tungstate-specific ABC transporter; WtpABC; TupABC
Systematic name: ATP phosphohydrolase (ABC-type, tungstate-importing)
Comments: An ATP-binding cassette (ABC) type transporter, characterized by the presence of two similar ATP-binding domains/proteins and two integral membrane domains/proteins. The enzyme, characterized from the archaeon Pyrococcus furiosus, the Gram-positive bacterium Eubacterium acidaminophilum and the Gram-negative bacterium Campylobacter jejuni, interacts with an extracytoplasmic substrate binding protein and mediates the import of tungstate into the cell for incorporation into tungsten-dependent enzymes.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Makdessi, K., Andreesen, J.R. and Pich, A. Tungstate uptake by a highly specific ABC transporter in Eubacterium acidaminophilum. J. Biol. Chem. 276 (2001) 24557–24564. [DOI] [PMID: 11292832]
2.  Bevers, L.E., Hagedoorn, P.L., Krijger, G.C. and Hagen, W.R. Tungsten transport protein A (WtpA) in Pyrococcus furiosus: the first member of a new class of tungstate and molybdate transporters. J. Bacteriol. 188 (2006) 6498–6505. [DOI] [PMID: 16952940]
3.  Smart, J.P., Cliff, M.J. and Kelly, D.J. A role for tungsten in the biology of Campylobacter jejuni: tungstate stimulates formate dehydrogenase activity and is transported via an ultra-high affinity ABC system distinct from the molybdate transporter. Mol. Microbiol. 74 (2009) 742–757. [DOI] [PMID: 19818021]
[EC 7.3.2.6 created 2013 as EC 3.6.3.55, transferred 2018 to EC 7.3.2.6]
 
 
EC 7.3.2.7     
Accepted name: arsenite-transporting ATPase
Reaction: ATP + H2O + arsenite[side 1] = ADP + phosphate + arsenite[side 2]
Other name(s): arsAB (gene names)
Systematic name: ATP phosphohydrolase (arsenite-exporting)
Comments: This bacterial transporter does not belong to the ABC superfamily, and instead is a member of its own family, referred to as the Ars family. The enzyme usually contains two subunits where one (with 12 membrane-spanning segments) forms the ’channel’ part and the other (occurring in pairs peripherally to the membrane) contains the ATP-binding site. It forms an arsenite efflux pump that removes arsenite from the cytoplasm, and can also remove antimonite anions.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Silver, S., Misra, T.K. and Laddaga, R.A. DNA sequence analysis of bacterial toxic heavy metal resistance. Biol. Trace Elem. Res. 21 (1989) 145–163. [PMID: 2484581]
2.  Rosen, B.P., Weigel, U., Monticello, R.A. and Edwards, B.P. Molecular analysis of an anion pump: purification of the ArsC protein. Arch. Biochem. Biophys. 284 (1991) 381–385. [DOI] [PMID: 1703401]
3.  Bruhn, D.F., Li, J., Silver, S., Roberto, F. and Rosen, B.P. The arsenical resistance operon of IncN plasmid R46. FEMS Microbiol. Lett. 139 (1996) 149–153. [PMID: 8674982]
4.  Zhou, T., Rosen, B.P. and Gatti, D.L. Crystallization and preliminary X-ray analysis of the catalytic subunit of the ATP-dependent arsenite pump encoded by the Escherichia coli plasmid R773. Acta Crystallogr. D Biol. Crystallogr. 55 (1999) 921–924. [PMID: 10089335]
[EC 7.3.2.7 created 2000 as EC 3.6.3.16, transferred 2019 to EC 7.3.2.7]
 
 
EC 7.4.2.1     
Accepted name: ABC-type polar-amino-acid transporter
Reaction: ATP + H2O + polar amino acid-[polar amino acid-binding protein][side 1] = ADP + phosphate + polar amino acid[side 2] + [polar amino acid-binding protein][side 1]
Glossary: nopaline = N-{(1R)-1-carboxy-4-[(diaminomethylene)amino]butyl}-L-glutamate
Other name(s): histidine permease; polar-amino-acid-transporting ATPase
Systematic name: ATP phosphohydrolase (ABC-type, polar-amino-acid-importing)
Comments: An ATP-binding cassette (ABC) type transporter, characterized by the presence of two similar ATP-binding domains/proteins and two integral membrane domains/proteins. The enzyme, found in bacteria, interacts with an extracytoplasmic substrate binding protein and mediates the import of polar amino acids. This entry comprises bacterial enzymes that import His, Arg, Lys, Glu, Gln, Asp, ornithine, octopine and nopaline.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Kuan, G., Dassa, E., Saurin, N., Hofnung, M. and Saier, M.H., Jr. Phylogenetic analyses of the ATP-binding constituents of bacterial extracytoplasmic receptor-dependent ABC-type nutrient uptake permeases. Res. Microbiol. 146 (1995) 271–278. [DOI] [PMID: 7569321]
2.  Nikaido, K., Liu, P.Q. and Ferro-Luzzi Ames, G. Purification and characterization of HisP, the ATP-binding subunit of a traffic ATPase (ABC transporter), the histidine permease of Salmonella typhimurium. Solubilization, dimerization , and ATPase activity. J. Biol. Chem. 272 (1997) 27745–27752. [DOI] [PMID: 9346917]
3.  Walshaw, D.L., Lowthorpe, S., East, A. and Poole, P.S. Distribution of a sub-class of bacterial ABC polar amino acid transporter and identification of an N-terminal region involved in solute specificity. FEBS Lett. 414 (1997) 397–401. [DOI] [PMID: 9315727]
4.  Saier, M.H., Jr. Molecular phylogeny as a basis for the classification of transport proteins from bacteria, archaea and eukarya. Adv. Microb. Physiol. 40 (1998) 81–136. [PMID: 9889977]
[EC 7.4.2.1 created 2000 as EC 3.6.3.21, transferred 2018 to EC 7.4.2.1]
 
 
EC 7.4.2.2     
Accepted name: ABC-type nonpolar-amino-acid transporter
Reaction: ATP + H2O + nonpolar amino acid-[nonpolar amino acid-binding protein][side 1] = ADP + phosphate + nonpolar amino acid[side 2] + [nonpolar amino acid-binding protein][side 1]
Other name(s): nonpolar-amino-acid-transporting ATPase
Systematic name: ATP phosphohydrolase (ABC-type, nonpolar-amino-acid-importing)
Comments: An ATP-binding cassette (ABC) type transporter, characterized by the presence of two similar ATP-binding domains/proteins and two integral membrane domains/proteins. The enzyme, found in bacteria, interacts with an extracytoplasmic substrate binding protein. This entry comprises enzymes that import Leu, Ile and Val.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Kuan, G., Dassa, E., Saurin, N., Hofnung, M. and Saier, M.H., Jr. Phylogenetic analyses of the ATP-binding constituents of bacterial extracytoplasmic receptor-dependent ABC-type nutrient uptake permeases. Res. Microbiol. 146 (1995) 271–278. [DOI] [PMID: 7569321]
2.  Saier, M.H., Jr. Molecular phylogeny as a basis for the classification of transport proteins from bacteria, archaea and eukarya. Adv. Microb. Physiol. 40 (1998) 81–136. [PMID: 9889977]
3.  Griffiths, J.K. and Sansom, C.E. The Transporter Factsbook, Academic Press, San Diego, 1998.
[EC 7.4.2.2 created 2000 as EC 3.6.3.22, transferred 2018 to EC 7.4.2.2]
 
 
EC 7.4.2.3     
Accepted name: mitochondrial protein-transporting ATPase
Reaction: ATP + H2O + mitochondrial-protein[side 1] = ADP + phosphate + mitochondrial-protein[side 2]
Systematic name: ATP phosphohydrolase (mitochondrial protein-importing)
Comments: A non-phosphorylated, non-ABC (ATP-binding cassette) ATPase involved in the transport of proteins or preproteins into mitochondria using the TIM protein complex. TIM is the protein transport machinery of the mitochondrial inner membrane that contains three essential Tim proteins: Tim17 and Tim23 are thought to build a preprotein translocation channel while Tim44 interacts transiently with the matrix heat-shock protein Hsp70 to form an ATP-driven import motor.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Bomer, U., Meijer, M., Maarse, A.C., Honlinger, A., Dekker, P.J., Pfanner, N. and Rassow, J. Multiple interactions of components mediating preprotein translocation across the inner mitochondrial membrane. EMBO J. 16 (1997) 2205–2216. [DOI] [PMID: 9171336]
2.  Berthold, J., Bauer, M.F., Schneider, H.C., Klaus, C., Dietmeier, K., Neupert, W. and Brunner, M. The MIM complex mediates preprotein translocation across the mitochondrial inner membrane and couples it to the mt-Hsp70/ATP-driving system. Cell 81 (1995) 1085–1093. [DOI] [PMID: 7600576]
3.  Voos, W., Martin, H., Krimmer, T. and Pfanner, N. Mechanisms of protein translocation into mitochondria. Biochim. Biophys. Acta 1422 (1999) 235–254. [DOI] [PMID: 10548718]
[EC 7.4.2.3 created 2000 as EC 3.6.3.51, transferred 2018 to EC 7.4.2.3]
 
 
EC 7.4.2.4     
Accepted name: chloroplast protein-transporting ATPase
Reaction: ATP + H2O + chloroplast-protein[side 1] = ADP + phosphate + chloroplast-protein[side 2]
Systematic name: ATP phosphohydrolase (chloroplast protein-importing)
Comments: A non-phosphorylated, non-ABC (ATP-binding cassette) ATPase that is involved in protein transport. Involved in the transport of proteins or preproteins into chloroplast stroma (several ATPases may participate in this process).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Cline, K., Ettinger, N.F. and Theg, S.M. Protein-specific energy requirements for protein transport across or into thylakoid membranes. Two lumenal proteins are transported in the absence of ATP. J. Biol. Chem. 267 (1992) 2688–2696. [PMID: 1733965]
2.  Nakai, M., Goto, A., Nohara, T., Sugito, D. and Endo, T. Identification of the SecA protein homolog in pea chloroplasts and its possible involvement in thylakoidal protein transport. J. Biol. Chem. 269 (1994) 31338–33341. [PMID: 7989297]
3.  Scott, S.V. and Theg, S.M. A new chloroplast protein import intermediate reveals distinct translocation machineries in the two envelope membranes: energetics and mechanistic implications. J. Cell Biol. 132 (1996) 63–75. [PMID: 8567731]
[EC 7.4.2.4 created 2000 as EC 3.6.3.52, transferred 2018 to EC 7.4.2.4]
 
 


Data © 2001–2019 IUBMB
Web site © 2005–2019 Andrew McDonald